Cho tam giác ABC có ba cạnh là a, b, c là \(a=x^2+x+1\), \(b=2x+1\), \(c=x^2-1\). Chứng minh rằng tam giác có một góc bằng 120 độ.
Cho tam giác ABC có trung tuyến AM cắt đường tròn ngoại tiếp tam giác tại N.Chứng minh: \(AB^2+AC^2=2AM.AN\)
Cho tam giác ABC có BC = a, AC = b, AB = c, đường phân giác trong ứng với góc A là la. Chứng minh: \(l_a=\dfrac{2bc.\cos\dfrac{A}{2}}{b+c}\)
Tam giác ABC có AB = 10,AC = 24, diện tích bằng 120. Tính độ dài đường trung tuyến AM.
Câu 1: Cho tam giác ABC. Khẳng định nào sau đây đúng ?
A: \(h_a=R.sinB.sinC\)
B: \(h_a=4R.sinB.sinC\)
C: \(h_a=2R.sinB.sinC\)
D: \(h_a=\frac{1}{4}R.sinB.sinC\)
Câu 2: Cho tam giác ABC nội tiếp (O,R). Diện tích tam giác ABC bằng ?
A: \(\frac{1}{2}R^2\left(sin2A+sin2B+sin2C\right)\)
B: \(R^2\left(sin2A+sin2B+sin2C\right)\)
C: \(\frac{1}{2}R^2\left(sinA+sinB+sinC\right)\)
D: \(R^2\left(sinA+sinB+sinC\right)\)
Câu 3: Cho tam giác ABC, M và N lần lượt thuộc 2 tia AB và AC (M, N ≠ A). Khẳng định nào sau đây đúng ?
A: \(\frac{S_{AMN}}{S_{ABC}}=3\frac{AM}{AB}.\frac{AN}{AC}\)
B: \(\frac{S_{AMN}}{S_{ABC}}=2\frac{AM}{AB}.\frac{AN}{AC}\)
C: \(\frac{S_{AMN}}{S_{ABC}}=\frac{1}{2}\frac{AM}{AB}\frac{AN}{AC}\)
D: \(\frac{S_{AMN}}{S_{ABC}}=\frac{AM}{AB}\frac{AN}{AC}\)
Câu 4: Cho tam giác ABC có a=BC, b=AC, c=AB. Khẳng định nào sau đây là đúng ?
A: a =b.cosB+c.cosC
B: a =b.cosC+b.cosB
C: a =b.sinB+c.sinC
D: a=b.sinC+c.sinB
cho tam giác ABC thỏa mãn điều kiện: \(\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}\)
Chứng minh rằng: \(\widehat{Â}=60^0\)
Cho tam giác ABC với BC = a; CA = b; AB = c. Đường phân giác \(l_a\) của \(\widehat{BAC}\) . Chứng minh rằng: \(l_a=\frac{2bc.cos\frac{A}{2}}{b+c}\)
Cho tam giác ABC có cạnh thỏa mãn \(a^2+b^2=5c^2\).Tính góc giữa 2 đường trung tuyến AM và BN
Cho tam giác ABC có các cạnh và góc thỏa mãn hệ thức: \(\frac{1-cosC}{1+cosC}=\frac{a-b}{a+b}\) . Chứng minh rằng tam giác ABC vuông