Cho tam giác abc có ha = căn p(p-a). Cmr tam gíac cân
Cho tam giác ABC. Phía ngoài tam gíac vẽ các tam giác đều ABD , ACE và tam gíac cân BCF có góc F =120°. I đối xứng với F qua BC. K đối xứng với I Qua ED.
a) CMR : TAM giác DIE cân
b) tam giác BIK là tam giác gì?
c) cmr : Tứ giác AKIF là hình bình hành; AF vuông góc với ED
Cho tam gíac ABC cân tại A. Kẽ AI vuông góc BC, I thuộc BC
a. CMR I là trung điểm BC
b) Lấy điểm E thuộc AB và điểm F thuộc AC sao cho AE = AF. Chứng minh rằng: tam giác IEF là tam giác cân.
c. CMR tam giác EBI = tam giác FCI
Xét \(\Delta ABC\) cân tại A:
AI là đường cao (AI vuông góc BC, I thuộc BC).
\(\Rightarrow\) AI là đường trung tuyến (T/c \(\Delta\) cân).
\(\Rightarrow\) I là trung điểm BC.
Vì \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow AB=AC;\widehat{B}=\widehat{C}\) (T/c \(\Delta\) cân).
Ta có: \(EB=AB-AE;FC=AC-AF.\)
Mà \(\left\{{}\begin{matrix}AE=AF\left(gt\right).\\AB=AC\left(cmt\right).\end{matrix}\right.\)
\(\Rightarrow EB=FC.\)
Xét \(\Delta EBI\) và \(\Delta FCI:\)
\(EB=FC\left(cmt\right).\\ \widehat{B}=\widehat{C}\left(cmt\right).\)
\(IB=IC\) (I là trung điểm BC).
\(\Rightarrow\Delta EBI\) \(=\Delta FCI\left(c-g-c\right).\)
\(\Rightarrow IE=IF\) (2 cạnh tương ứng).
\(\Rightarrow\Delta IEF\) cân tại I.
Cho tam giác ABC. Phía ngoài tam gíac vẽ các tam giác đều ABD, ACE và tam giác cân BCF có góc F =120°. I đối xứng với F qua BC. K đối xứng với I qua DE.
a) CMR : tam giác DIE cân và góc I = 120 độ
b) tam giác BIK là tam giác gì?
c) Tứ giác AKIF là hình bình hành; AF vuông góc với DE
Cho tam giác ABC có góc A <90 o . Vẽ ngoài Tam giác ABC tam giác vuông cân đỉnh A là Tam giác MAB & NAC.
a)Chứng minh MC=NB
b)MC vuông góc NB.
c)Giả sử Tam gíac ABC đều cạnh =4cm.Tính MB=NC
d)Chứng minh NM//BC
a) Thấy ˆMAC=ˆMAB+ˆBAC=90o+ˆBAC=ˆCAN+ˆBAC=ˆBANMAC^=MAB^+BAC^=90o+BAC^=CAN^+BAC^=BAN^
Từ đây ta xét t/g MAC và BAN ta có:
=>MA=BA; AC=AN
=>ˆMAC=ˆBANMAC^=BAN^
=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN
đpcm.
b)
Ta gọi giao điểm của MC và BN là 1 điểm D
Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))
Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^
+ˆBMA=90o+BMA^=90o
Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o
⇒BN⊥MC⇒BN⊥MC
Bổ sung D giao điểm nhé vào hình nha bn.
c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm
Áp dụng định lý pi-ta-go ta có:
Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)
Khi ABC đều cạnh 4cm thì AMC = NAB là t/g vuông cân có góc ở đỉnh : 90o+60o=150o
=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o
Thì ˆMCB=ˆACB−ˆACM=60o−15o=45oMCB^=ACB^−ACM^=60o−15o=45o
Lại có ˆMAN=360o−90o−60o−90o=120oMAN^=360o−90o−60o−90o=120o
Vì t/gMAN cân tại A nên ˆAMNAMN^= (180o-120o) : 2 =30o
=> ˆCNM=30o+15o=45oCNM^=30o+15o=45o
=>ˆCNM=ˆMCBCNM^=MCB^
=> BC//MN ( so le trong)
đpcm.
Cho tam giác ABC . Kẻ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = MA
a)Cm tam giác ABM = tam giác ECM
b)Kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm D sao cho HD = HA Chứng minh BC là tia phân giác của góc ABD và BD = CE
c) Hai đường thẳng BD và CE cắt nhau tại K . Chứng Minh Tam gíac BCK cân
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
cu lam nhu nguoi hoi nay lam dung 100 phan tram
Cho tam giác ABC có góc A <90 o . Vẽ ngoài Tam giác ABC tam giác vuông cân đỉnh A là Tam giác MAB & NAC.
a)Chứng minh MC=NB
b)MC vuông góc NB.
c)Giả sử Tam gíac ABC đều cạnh =4cm.Tính MB=NC
d)Giả thiết như câu c. Chứng minh NM//BC
a) Ta thấy \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{CAN}+\widehat{BAC}=\widehat{BAN}\)
Xét tam giác MAC và BAN có:
MA = BA
AC = AN
\(\widehat{MAC}=\widehat{BAN}\)
\(\Rightarrow\Delta MAC=\Delta BAN\left(c-g-c\right)\Rightarrow MC=BN\)
b) Gọi giao điểm của MC và BN là J.
Ta có: \(\widehat{JBA}=\widehat{JMA}\)(Vì \(\Delta MAC=\Delta BAN\left(c-g-c\right)\) )
Vậy nên \(\widehat{MBJ}+\widehat{BMJ}=\widehat{MBA}+\widehat{JBA}+\widehat{BMJ}=\widehat{MBA}+\widehat{JMA}+\widehat{BMJ}\)
\(=\widehat{MBA}+\widehat{BMA}=90^o\)
Xét tam giác MBJ có \(\widehat{MBJ}+\widehat{BMJ}=90^o\Rightarrow\widehat{BJM}=90^o\Rightarrow BN\perp MC\)
c) Giả sử tam giác ABC đều cạnh 4 cm thì AB = AC = MA = NA = 4cm
Khi đó áp dụng định lý Pi-ta-go cho tam giác vuông cân MAB và NAC thì \(MB=NC=4\sqrt{2}\left(cm\right)\)
d) Khi tam giác ABC đều cạnh 4cm thì AMC và NAB là các tam giác cân có góc ở đỉnh là: 90o + 60o = 150o
Suy ra \(\widehat{AMC}=\widehat{ACM}=\frac{180^o-150^o}{2}=15^o\)
Vậy thì \(\widehat{MCB}=\widehat{ACB}-\widehat{ACM}=60^o-15^o=45^o\)
Ta có \(\widehat{MAN}=360^o-90^o-60^o-90^o=120^o\)
Tam giác MAN cũng cân tại A nên \(\widehat{AMN}=\frac{180^o-120^o}{2}=30^o\)
\(\Rightarrow\widehat{CMN}=30^o+15^o=45^o\)
Suy ra \(\widehat{CMN}=\widehat{MCB}\)
Chúng lại ở vị trí so le trong nên BC // MN.
a) Thấy ˆMAC=ˆMAB+ˆBAC=90o+ˆBAC=ˆCAN+ˆBAC=ˆBANMAC^=MAB^+BAC^=90o+BAC^=CAN^+BAC^=BAN^
Từ đây ta xét t/g MAC và BAN ta có:
=>MA=BA; AC=AN
=>ˆMAC=ˆBANMAC^=BAN^
=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN
đpcm.
b)
Ta gọi giao điểm của MC và BN là 1 điểm D
Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))
Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^
+ˆBMA=90o+BMA^=90o
Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o
⇒BN⊥MC⇒BN⊥MC
Bổ sung D giao điểm nhé vào hình nha bn.
c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm
Áp dụng định lý pi-ta-go ta có:
Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)
Khi ABC đều cạnh 4cm thì AMC = NAB là t/g vuông cân có góc ở đỉnh : 90o+60o=150o
=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o
Thì ˆMCB=ˆACB−ˆACM=60o−15o=45oMCB^=ACB^−ACM^=60o−15o=45o
Lại có ˆMAN=360o−90o−60o−90o=120oMAN^=360o−90o−60o−90o=120o
Vì t/gMAN cân tại A nên ˆAMNAMN^= (180o-120o) : 2 =30o
=> ˆCNM=30o+15o=45oCNM^=30o+15o=45o
=>ˆCNM=ˆMCBCNM^=MCB^
=> BC//MN ( so le trong)
đpcm.
Cho tam giác ABC vuông tại A với đường cao AH. Trên nửa mp bờ BC có chứa điểm A lấy điểm D sao cho DB=DC=AB/căn 2. CMR BD DH và HA là đọ dài 3 cạnh của 1 tam giác vuông
Cho tam giác ABC vuông tại A với đường cao AH. Trên nửa mp bờ BC có chứa điểm A lấy điểm D sao cho DB=DC=AB/căn 2. CMR BD DH và HA là đọ dài 3 cạnh của 1 tam giác vuông
Bài 1: Cho tam giác ABC có ba góc nhọn ,đường cao AH.Vẽ về phía ngoài tam giác ABC các tam giác ABE và ACF vuông cân tại A .Từ E và F kẻ đường vuông góc EK và FN với đường thẳng HA
a) CMR :EK=FN
b)Gọi I là giao điểm của EF với đường thẳng HA .Tìm điều kiên của tam giác ABC để EF=2AI
\(\frac{2}{3}\)số cam còn lại sau lần bán thứ nhất là :
29 + 1 = 30 ( quả )
Số quả cam còn lại sau lần bắn thứ nhất là :
30 : \(\frac{2}{3}\)= 45 ( quả )
Số cam bạn đầu là :
46 : \(\frac{2}{3}\)= 69 ( quả )
Đáp số : 69 quả cam
sau khi bán 2 đầu đc \(\frac{1}{3}\) còn lại số phần cam còn lại là:
\(1-\frac{1}{3}=\frac{2}{3}\)(số cam)
số cam còn lại là:
29+1=30(quả)
số cam còn lại sau lần 1 bán là:
\(30:\frac{2}{3}=45\)(quả)
sau khi bán lần đầu \(\frac{1}{3}\) số phần cam còn lại là:
\(1-\frac{1}{3}=\frac{2}{3}\)(số cam)
số cam còn lại là:
45+1=46(quả)
ban đầu có số quả cam là:
\(46:\frac{2}{3}=69\)(Quả)
đáp số:69 quả
cho tam gíac đều ABC có diện tích là 1200 cm.Kẻ chiều cao AH được tam giác AHC có chiều cao HI bằng 24 cm. Tính chu vi tam gíac ABC
cho tam giác ABC có cạnh AB bằng 25 cm .Trên cạnh BC lấy 2 điểm M và Nsao cho BN bằng 2 / 3 MN. NC bằng 1 / 2 MN , biết đường cao MH của tam giác ABN bằng 12 cm. Tính diện tích tam giác ABC
Độ dài của cạnh đáy là:
1200 x 2 : 24 = 100 ( cm )
Chu vi hình tam giác là:
100 x 3 = 300 ( cm )
Đáp số: 300 cm
Cho tam giác ABC có 3 góc nhọn, đường cao AH. Vẽ về phía ngoài tam giác ABC các tam giác ABE và tam giác ACE vuông cân tại A. Từ E và F kẻ đường vuông góc EK và FN với đường thẳng HA
CMR:
a) EK=FN
b)Gọi I là giao điểm của EF và đường thẳng HA. Tìm điều kiện của tam giác ABC để \(\text{ }\text{EF}=2\text{A}I\)
Bạn xem lời giải ở đây nhé
Câu hỏi của be hat tieu - Toán lớp 7 - Học toán với OnlineMath