Xét \(\Delta ABC\) cân tại A:
AI là đường cao (AI vuông góc BC, I thuộc BC).
\(\Rightarrow\) AI là đường trung tuyến (T/c \(\Delta\) cân).
\(\Rightarrow\) I là trung điểm BC.
Vì \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow AB=AC;\widehat{B}=\widehat{C}\) (T/c \(\Delta\) cân).
Ta có: \(EB=AB-AE;FC=AC-AF.\)
Mà \(\left\{{}\begin{matrix}AE=AF\left(gt\right).\\AB=AC\left(cmt\right).\end{matrix}\right.\)
\(\Rightarrow EB=FC.\)
Xét \(\Delta EBI\) và \(\Delta FCI:\)
\(EB=FC\left(cmt\right).\\ \widehat{B}=\widehat{C}\left(cmt\right).\)
\(IB=IC\) (I là trung điểm BC).
\(\Rightarrow\Delta EBI\) \(=\Delta FCI\left(c-g-c\right).\)
\(\Rightarrow IE=IF\) (2 cạnh tương ứng).
\(\Rightarrow\Delta IEF\) cân tại I.