Cho tam giác BC vuông tại A. Gọi O là trung điểm AB. Hạ AH vuông góc CO. Trên đoạn OA lấy điểm D sao cho góc AHD bằng góc ABC. CMR:HB vuông góc HD
Cho tam giác ABC vuông tại A. Gọi O là trung điểm AB. Hạ AH vuông góc với CO. Trên đoạn OA lấy điểm D sao cho góc AHD bằng góc ABC. CMR: HB vuông góc HD
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Cho tam giác ABC(AB<AC), O là trung điểm của BC, trên tia đối OA lấy K sao cho OA=OK. Vẽ AH vuông góc với BC. Trên HC lấy HD=HA. Đường vuông góc vs BC tại D cắt AC tại E
a, Chứng minh tam giác ABC= tam giác CKA
b, Chứng minh AB=AE
c, Gọi M là trung điểm của BE. Tính góc CHM
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
Ta có :O là trung điểm của BC(gt)
O là trung điểm của AK(OA=OK)
=>ABKC là hình bình hành(dhnb)
Mà góc BAC = 90 độ
=>ABKC là hình chữ nhật (dhnb)
=>AB=CK và góc ACK = 90 độ
Xét tam giác ABC và tam giác CKA có:
AB=CK(cmt)
góc BAC=góc KCA( cùng bằng 90 độ)
AC chung
Vậy tam giác ABC = tam giác CKA(c.g.c)
b)Xét tam giác AHB và tam giác CHA có
góc AHB = góc CHA (=90 độ)
góc BAH =góc ACH(cùng phụ với góc B)
Vậy tam giác AHB đồng dạng tam giác CHA(g.g)
=>\(\dfrac{AB}{AH}=\dfrac{AC}{CH}\)(1)
Ta có AH\(\perp\)CH
ED\(\perp\)CH
=>AH//DE
Xét tam giác ACH có
AH//DE
=>\(\dfrac{AE}{HD}=\dfrac{AC}{CH}\)
=>\(\dfrac{AE}{AH}=\dfrac{AC}{CH}\)(do AH=AD)(2)
Từ(1) và (2) => \(\dfrac{AB}{AH}=\dfrac{AE}{AH}\)
=>AB=AE(đpcm)
Cho tam giác ABC vuoog tại A . O là trung điểm của BC, trên tia đối của tia OA lấy điểm K sao cho OA= OK. Vẽ AH vuông góc BC tại H. Trên tia đối của HC lấy HD = HA. Đường vuông góc với BC tại D cắt AC tại E
a) CMR: tan giác ABC bằng tam giác CKA
b) CM AB = AE
c) Gọi M là trung điểm của BE. tính CHM
chịu m ko bt lm
Cho tam giác ABC vuông tại A ( AB<AC),O là trung điểm của BC . Trên tia đối OA lấy điểm K sao cho OA=OK . VẼ AH vuông góc với BC tại H . Trên tia HC lấy điểm D sao choHD=HA . Đường vuông góc với BC tại D cắt AC tại E . Chứng minh rằng : a; Tam giác ABC = tam giác CKA và OA = 1/2BC ; b, AB = AE ; c, Gọi M là trung điểm của BE . Tính góc CHM
cho tam giác ABC vuông tại A ( AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA=OK . vẽ AH vuông góc với BC tại H . trên tia HC lấy HD =HA . đường vuông góc với BC tại D cắt AC tại E .
1 CM tam giác ABC và tam giác CKA = nhau
2 CM AB=AE
3 gọi M là trung điểm của BE . tính số đo góc CHM
4 CM 1/AB^2 + 1/AC^2 = 1/AH^2
Xét t/g AOB &t/g KOC, ta có:
OC=OB( O là TĐ của BC)
\(\widehat{AOB}\)=\(\widehat{KOC}\)
OA=OK(gt)
=> \(\Delta AOB=\Delta KOC\)(c-g-c)
=> AB= CK(2 cạnh t/ứ)
\(\widehat{BAO}\)=\(\widehat{CKO}\)(2gocs t/ứ)
mà chúng ở vị trí SLT
=>\(AB//Ck\)
Ta có:
\(AB\perp AC\)(\(\Delta ABC\)vuông tại A)
\(AB//CK\)
=> \(AC\perp Ck\)
=> \(\widehat{KCA}=\widehat{BAC}\left(=90^0\right)\)
Xét t/g vuông ABC &t/g vuông CKA, ta có:
AB=CK
AC chung
=> t/g vuông ABC= t/g vuông CKA(2cgv)
cho tam giác ABC vuông tại A(AC>AB) kẻ AH vuông góc với BC. trên tia HC lấy điểm D sao cho HD=HB, kẻ CE vuông góc với AD kéo dài tại E.
a, tam giác ahb=tam giác ahd
b, góc BAH= góc ECD
c, CB là tia phân giác của góc ACE
d, lấy k trên tia AH sao cho AH= KH. chúng minh KD vuông góc với AC
a)Xét ∆ vuông ABH và ∆ADH có :
AH chung
BH = HD
=> ∆ABH =∆ADH (2 cạnh góc vuông)
b) Xét ∆ABD ta có :
AH \(\perp\)BC
BH = HD
=> AH là trung trực
=> ∆ABD cân tại A
=> AB = AD
ABD = ADB
AH là phân giác BAD
=> BAH = DAH
Mà ADB = EDC ( đối đỉnh)
Xét ∆ ABH có :
ABH + BHA + BAH = 180°
=> BAH = 90° - ABH (1)
Xét ∆ DEC có :
DEC + ECD + CDE = 180°
=> EDC = 90° - EDC (2)
Mà EDC = BDA (cmt)
=> EDC = BDA = ABD (3)
Từ (1) (2) (3) => BAH = ECD (dpcm)
c) Xét ∆ABC có
BAC + ACB + ABC = 180°
=> ACB = 90° - ABC
Mà ECD = ABC (cmt)
=> ECD = BCA
Hay CB là phân giác ECA
Cho tam giác ABC vuông tại A Vẽ AH vuông góc BC tại H Trên tia đối tia CA lấy điểm D sao cho H là trung điểm đoạn thẳng AB
A) Chứng minh tam giác AHB bằng tam giác DHB
B) Chứng minh góc bằng góc ACB
c) Gọi E,F lần lượt là trung điểm các cạnh DB ,AB. Đường thẳng DF cắt cạnh BC tại M. Chứng minh ba điẻm A, M,E thẳng hàng
giúp ee mmnmn uuiư
Cho tam giác ABC vuông tại A ( AB < AC ). O là trung điểm của BC, trên tia đối của tia OA lấy điểm K sao cho OA= OK. Vẽ AH vuông góc BC tại H. Trên tia HC lấy HD = HA. Đường vuông góc với BC tại D cắt AC tại E
a) CMR: Tam giác ABC bằng tam giác CKA và AO = 1/2 BC
b) CM AB = AE
c) Gọi M là trung điểm của BE. tính góc CHM
giúp mình câu c nha mình đang cần gấp
Tham khảo: Câu hỏi của Lee Linh