Cho tam giác ABC nhọn, có AI là phân giac các đường cao AA', BB', CC' cắt nhau tại H.
a, C/minh: \(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}\ge6\)
b, Gọi IM, IN thứ tự là phân giác của góc AIC và góc AIB.C/minh: AN.BI.CM = BN.IC.AM
Cho tam giác ABC nhọn, các đường cao AA', BB', CC'', H là trực tâm.
a) Tính tổng \(\frac{HA'}{AA'}+\frac{Hb'}{BB'}+\frac{HC'}{CC'}\)
b) gọi AI là phân giác của tam giác ABC, IM, IN thứ tự là phân giác của góc AIC và ATB. Cmr: AN.BI.CM=BN.IC.AM
c) cmr: \(\frac{\left(AB+BC+CA\right)^2}{AA'^2=BB'^2+CC'^2}\ge4\)
a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)
mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)
\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)
vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA giao điểm Cx tại I
\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật
\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)
Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC
\(\Rightarrow\)BD2 \(\le\)( BC + CD )2
\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2
\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2
\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2
\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2 . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC
tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC
4AA'2 \(\le\)( AB + AC )2 - BC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC
Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)
\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều
cho tam giác ABC nhọn, các đường cáo AA', BB', CC', H là trực tâm.
a/ tính tổng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b/ gọi AI là phân giác của tam giác ABC; IM; IN thứ tự là phân giác của góc AIC và góc AIB, chứng minh rằng: AN.BI.CM=BN.IC.AM
b)Do AI là phân giác
=>\(\frac{IB}{IC}=\frac{AB}{AC}\)
Do IN là phân giác=>\(\frac{AN}{BN}=\frac{AI}{BI}\)
Do IM là phân giác
=>\(\frac{CM}{AM}=\frac{CI}{AI}\)
=>\(\frac{BI}{CI}\cdot\frac{AN}{BN}\cdot\frac{CM}{AM}=\frac{AB}{AC}\cdot\frac{AI}{BI}\cdot\frac{CI}{AI}=\frac{AB}{AC}\cdot\frac{CI}{BI}=1\)
=>AN.BI.CM=BN.IC.AM
A=(\frac{m-1}{1}+...+\frac{m-(m-1)}{m-1}+\frac{m-m}{m})+(\frac{1}{m-1}+\frac{2}{m-2}+...+\frac{m-2}{2}+\frac{m-1}{1})
a/ Ta có:
\(\frac{S_{HBC}}{S_{ABC}}=\frac{\frac{1}{2}.HA'.BC}{\frac{1}{2}.AA'.BC}=\frac{HA'}{AA'}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\left(2\right)\\\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) \(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=1\)
cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm
a) tính tổng HA'/AA' + HB'/BB' + HC'/CC'
b) gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN.IC.AM
a, Có : HA'/AA' = HA'.BC/AA'.BC = S AHB + S AHC / S ABC
Tương tự : HB'/BB' = S BHA + S BHC / S ABC ; HC'/CC' = S CHA + S CHB / S ABC
=> HA'/AA' + HB'/BB' + HC'/CC' = 2.(S AHC + S AHB + S BHC)/S ABC = 2
Tk mk nha
a)
'
AA
'
HA
BC
'.
AA
.
2
1
BC
'.
HA
.
2
1
S
S
ABC
HBC
; (0,5đi
ể
m)
Tương t
ự
:
'
CC
'
HC
S
S
ABC
HAB
;
'
BB
'
HB
S
S
ABC
HAC
(0,5đi
ể
m)
1
S
S
S
S
S
S
'
CC
'
HC
'
BB
'
HB
'
AA
'
HA
ABC
HAC
ABC
HAB
ABC
HBC
(0,5đi
ể
m)
b) Áp d
ụ
ng tính ch
ấ
t phân giác vào các tam giác ABC,
ABI, AIC:
AI
IC
MA
CM
;
BI
AI
NB
AN
;
AC
AB
IC
BI
(0,5đi
ể
m )
AM
.
IC
.
BN
CM
.
AN
.
BI
1
BI
IC
.
AC
AB
AI
IC
.
BI
AI
.
AC
AB
MA
CM
.
NB
AN
.
IC
BI
(0,5đi
ể
m )
Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi
Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm
a) Tính tổng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC; IM, IN lần lượt là phân giác của góc AIC và AIB. Chứng minh rằng: AN.BI.CM=BN.IC.AM
c) Chứng minh rằng \(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm.
a) Tính tổng HA'/AA' + HB'/BB' + HC'/CC'
b) Gọi AI là phân giác của tam giác ABC (I nằm trong ABC); IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN.CI.AM
c) Tam giác ABC như thế nào thì biểu thức \(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\) đạt giá trị nhỏ nhất?
tự kẻ hình nha bạn
a, có \(\hept{\begin{cases}S_{HBC}=\frac{BC\cdot HA'}{2}\\S_{ABC}=\frac{BC\cdot AA'}{2}\end{cases}}\) \(\Rightarrow\frac{S_{HBC}}{S_{ABC}}=\frac{BC\cdot HA'}{2}\div\frac{BC\cdot AA'}{2}=\frac{HA'}{AA'}\)
có tương tự ta có \(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\) và \(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)
\(\Rightarrow\frac{S_{HAC}+S_{HBC}+S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
để mjnh làm tiếp câu b
b, IN là pg của \(\widehat{AIB}\) (gt)
\(\Rightarrow\frac{NB}{IB}=\frac{NA}{AI}\) (tc)
\(\Rightarrow NB\cdot AI=IB\cdot NA\)
\(\Rightarrow NB\cdot AI\cdot CM=IB\cdot AN\cdot CM\left(1\right)\)
IM là pg của \(\widehat{AIC}\) (gt)
\(\Rightarrow\frac{AM}{AI}=\frac{MC}{IC}\)
\(\Rightarrow AM\cdot IC=AI\cdot CM\)
\(\Rightarrow AM\cdot IC\cdot NB=AI\cdot CM\cdot NB\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AN\cdot BI\cdot CM=BN\cdot CI\cdot AM\)
Cho tam giác ABC nhọn. Các đường cao AA', BB', CC', H là trực tâm.
a) Tính tổng HA'/AA'+HB'/BB'+HC'/CC'.
b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. CMR: AN.BI.CM=BN.IC.AM.
c) CMR: (AB+BC+CA)^2/AA'^2+BB'^2+CC'^2 lớn hơn hoặc bằng 4
c) Bổ đề: Cho tam giác ABC có đường cao AH. Khi đó \(AH^2\le\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}\).
Thật vậy, dựng hình chữ nhật AHCE. Lấy F đối xứng với C qua AF.
Ta có \(AH=CE=\dfrac{CF}{2}\).
Do đó \(CF^2+CB^2=BF^2\le\left(AB+AF\right)^2=\left(AB+AC\right)^2\Rightarrow CF^2\le\left(AB+AC-CB\right)\left(AC+AB+BC\right)\Rightarrow AH^2\le\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}\).
Bổ đề được cm.
Áp dụng ta có \(\dfrac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\ge\dfrac{\left(AB+BC+CA\right)^2}{\dfrac{\left(AB+AC-CB\right)\left(AC+AB+BC\right)}{4}+\dfrac{\left(BC+BA-AC\right)\left(AC+AB+BC\right)}{4}+\dfrac{\left(BC+AC-AB\right)\left(AC+AB+BC\right)}{4}}=4\).
Vậy ta có đpcm.
a) Ta có \(\dfrac{HA'}{AA'}=\dfrac{HA'.BC}{AA'.BC}=\dfrac{2S_{HBC}}{2S_{ABC}}=\dfrac{S_{HBC}}{S_{ABC}}\).
Tương tự \(\dfrac{HB'}{BB'}=\dfrac{S_{HCA}}{S_{ABC}};\dfrac{HC'}{CC'}=\dfrac{S_{HAB}}{S_{ABC}}\).
Do đó \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HBC}+S_{HCA}+S_{HAB}}{S_{ABC}}=1\).
b) Theo t/c đường phân giác ta có \(\dfrac{AN.BI.CM}{BN.CI.AM}=\dfrac{AN}{BN}.\dfrac{BI}{CI}.\dfrac{CM}{AM}=\dfrac{AI}{IB}.\dfrac{IB}{IC}.\dfrac{CI}{AI}=1\).
cho tam giác ABC nhọn, các đường cáo AA', BB', CC', H là trực tâm.
a/ tính tổng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b/ gọi AI là phân giác của tam giác ABC; IM; IN thứ tự là phân giác của góc AIC và góc AIB, chứng minh rằng: AN.BI.CM=BN.IC.AM
c/ tam giác ABC như thế nào thì biểu thức \(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\) đạt giá trị nhỏ nhất?
cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm
a) tính \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC;IM,IN thứ tự là phân giác của góc AIC và góc AIB.CMR: AN*BI*IC=BN*IC*AM
C)CMR đường thẳng DF luôn di qua 1 điểm cố định khi điểm M di động trên đoạn thẳng Ab
Ban vao trang nay:Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi
Cho tam giác ABC nhọn, các đường cao AA',BB',CC' , H la trực tâm.
a) Tính tổng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC; IM,IN thứ tự là phân giác của góc AIC và góc AIB . CMR: AN.BI.CM=BN.IC.AM
c) CMR: đường thẳng DF luôn đi qua 1 điểm cố định khi điểm M di động trên đoạn thẳng AB
Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi