Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Quốc Tuấn
Xem chi tiết
dam thu a
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2020 lúc 13:28

\(abc+ab+bc+ca=2\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=a+b+c+3\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)

Đặt \(\left(\frac{1}{a+1};\frac{1}{b+1};\frac{1}{c+1}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sum\frac{x}{x^2+1}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Mặt khác \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)=\frac{8}{9}\left(x+y+z\right)\)

\(\Rightarrow P\le\frac{9}{4\left(x+y+z\right)}\le\frac{9}{4\sqrt{3\left(xy+yz+zx\right)}}=\frac{3\sqrt{3}}{4}\)

Khách vãng lai đã xóa
nguyen phu trong
Xem chi tiết
Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

FL.Hermit
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Khách vãng lai đã xóa
FL.Hermit
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Khách vãng lai đã xóa
hung
Xem chi tiết
Kiệt Nguyễn
26 tháng 5 2020 lúc 13:23

Với ab + bc + ca = 1 thì:

\(Q=\frac{2a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}=\)\(\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}}{2}+\frac{\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}}{2}+\frac{\frac{2c}{a+c}+\frac{c}{2\left(b+c\right)}}{2}\)(Theo BĐT Cô - si)

\(=\frac{\frac{2\left(a+b\right)}{a+b}+\frac{b+c}{2\left(b+c\right)}+\frac{2\left(a+c\right)}{a+c}}{2}=\frac{2+\frac{1}{2}+2}{2}=\frac{9}{4}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 5 2020 lúc 20:11

\(Q=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\) chứ?

Khách vãng lai đã xóa
Kiệt Nguyễn
26 tháng 5 2020 lúc 20:35

Dấu "=" của mình sai rồi thì phải, tìm lại giúp mình nha!

Khách vãng lai đã xóa
Cao Thị Thùy Linh
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
6 tháng 7 2020 lúc 20:11

Đề thi tuyển sinh chuyên Khoa học tự nhiên-Đại Học quốc gia Hà Nội năm học 2017-2018

ta có: \(ab+bc+ca+abc=2\)

\(\Leftrightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)=\left(1+a\right)+\left(1+b\right)+\left(1+c\right)\)

\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)}+\frac{1}{\left(1+b\right)\left(1+c\right)}+\frac{1}{\left(1+c\right)\left(1+a\right)}=1\)

đặt \(x=\frac{1}{1+a};y=\frac{1}{1+b};z=\frac{1}{1+c}\Rightarrow xy+yz+xz=1\)

ta có \(P=\frac{a+1}{\left(a+1\right)^2+1}+\frac{b+1}{\left(b+1\right)^2+1}+\frac{c+1}{\left(c+1\right)^2+1}\)

\(=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}+\frac{\frac{1}{y}}{\frac{1}{y^2}+1}+\frac{\frac{1}{z}}{\frac{1}{z^2}+1}=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)

\(=\frac{x}{\left(x+y\right)\left(y+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+y\right)\left(z+x\right)}\)

\(=\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}=\frac{2}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

mà \(9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+z+zx\right)\)

\(\Leftrightarrow x^2y+y^2z+z^2x+xy^2+yz^2+zx^2\ge6xyz\)(đúng vì theo BĐT Cosi)

\(\Rightarrow P\le\frac{2}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4\left(x+y+z\right)}\le\frac{9}{4\sqrt{3}}=\frac{3\sqrt{3}}{4}\)

(vì \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\))

Vậy \(P_{max}=\frac{3\sqrt{3}}{4}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}-1\)

Khách vãng lai đã xóa
Văn Thắng Hồ
Xem chi tiết
Hồng Phúc
15 tháng 10 2020 lúc 22:48

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

Khách vãng lai đã xóa
trần xuân quyến
Xem chi tiết
vũ tiền châu
1 tháng 1 2018 lúc 13:54

Áp dụng bđt bu nhi a, ta có 

\(P^2\le3\left(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\right)\)

Áp dụng bđt cô si, ta có 

\(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

tương tự với mấy cái kia =>\(P^2\le\frac{3}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+a}+\frac{1}{ca+a+1}\right)\)

mà với abc =1, thì bạn sẽ chứng minh được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)

phân thức thứ 1 để nguyê, phân thức thứ 2 nhân với ab, phân thức thứ 3 nhân với b, rồi chỗ napf có abc thì thay abc=1

thì bạn sẽ chứng minh được cái kia=1 

=>\(P\le\sqrt{\frac{3}{2}}\)

dâu = xảy ra <=>a=b=c=1

zZz Cool Kid_new zZz
4 tháng 7 2020 lúc 22:13

Dễ thấy theo AM - GM :

\(\frac{1}{\sqrt{a^2+2b^2+3}}=\frac{1}{\sqrt{\left(a^2+b\right)+\left(b^2+1\right)+2}}\le\frac{1}{\sqrt{2ab+2b+2}}\)

\(\le\frac{\sqrt{6}}{4}\left(\frac{1}{ab+b+1}+\frac{1}{3}\right)\)

Tương tự:

\(\frac{1}{\sqrt{b^2+2c^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{bc+c+1}+\frac{1}{3}\right);\frac{1}{\sqrt{c^2+2a^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{ca+a^2+1}+\frac{1}{3}\right)\)

Cộng lại ta sẽ có đpcm

Vì dễ thấy \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) với abc=1

Khách vãng lai đã xóa