GPT
4x^2 =5x \(-2\sqrt{x-1}-1\)'
Giusp midnh nhanh ạ:3
Tìm x biết
a, ( 3 1/2 - x ) . 1 1/4 = 15/6
b, 3/2 - x = -7/4 + 5x
c, 1/2 x + 150% x = 2016
d, 4 - | 1/3 - x | = 2/3
Làm đầy đủ các bước với đủ 4 câu giúp midnh với mình tick please
\(a)\left(3\frac{1}{2}-x\right).1\frac{1}{4}=\frac{15}{6}\)
\(\left(\frac{7}{2}-x\right).\frac{5}{4}=\frac{15}{6}\)
\(\frac{7}{2}-x=\frac{15}{6}:\frac{5}{4}\)
\(\frac{7}{2}-x=2\)
\(x=\frac{7}{2}-2\)
\(\Rightarrow x=\frac{3}{2}\)
\(b)\frac{3}{2}-x=-\frac{7}{4}+5x\)
\(\frac{3}{2}-\frac{7}{4}=x+5x\)
\(-\frac{1}{4}=6x\)
\(x=-\frac{1}{4}:6\)
\(\Rightarrow x=-\frac{1}{24}\)
\(c)\frac{1}{2}x+150\%x=2016\)
\(\left(\frac{1}{2}+\frac{3}{2}\right).x=2016\)
\(2.x=2016\)
\(x=2016:2\)
\(\Rightarrow x=1008\)
giải phương trình
1. 2\(^{x^2+5x-1=7\sqrt{x^3-1}}\)
2. \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
giải theo cách đặt ẩn ạ. nhanh với ạ!!
cảm ơn nhiều ạ
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow2\left(x^2+x+1\right)+3\left(x-1\right)-7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a\\\sqrt{x-1}=b\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2-7ab=0\)
\(\Leftrightarrow\left(a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=3\sqrt{x-1}\\2\sqrt{x^2+x+1}=\sqrt{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=9\left(x-1\right)\\4\left(x^2+x+1\right)=x-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\)
Phương trình trở thành:
\(a+a^2-2=0\Leftrightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)
\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)
\(\Leftrightarrow\sqrt{x-2}=0\)
e sửa lại câu 1 ạ: 2\(\text{x^2+5x−1=7√x3−1}\)
Cho 2 biểu thức:\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}B=\dfrac{-5}{\sqrt{x}+1}\)
Tính gía trị nhỏ nhất của biểu thức P=\(\sqrt{x}\) -A.B
giusp mình vs ạ , mình cảm ơn
Bạn kiểm tra lại xem đã viết đúng đề chưa vậy?
Giusp em tìm giới hạn của bài này với ạ ??
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[3]{x}+x^2+x+1}{x+1}\)
Lời giải:
\(\lim_{x\to -1}\frac{\sqrt[3]{x}+x^2+x+1}{x+1}=\lim_{x\to -1}\frac{x(x+1)}{x+1}+\lim_{x\to -1}\frac{\sqrt[3]{x}+1}{x+1}\)
\(=\lim_{x\to -1}x+\lim_{x\to -1}\frac{x+1}{(x+1)(\sqrt[3]{x^2}-\sqrt[3]x+1)}\)
\(=\lim_{x\to -1}x+\lim_{x\to -1}\frac{1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}\)
\(=-1+\frac{1}{1-(-1)+1}=\frac{-2}{3}\)
Giải các bất phương trình sau:
1, \(\sqrt{5x+1}-\sqrt{4x-1}\le3\sqrt{x}\)
2, \(\sqrt{5x^2+10x+1}\ge7-x^2-2x\)
3, \(x^2-1< \sqrt{x-1}+\sqrt{2x}\)
4, \(3\sqrt{x^3+1}+4x^2-5x+3\ge0\)
5*, \(\sqrt{x^2-x-2}+3\sqrt{x}\le\sqrt{5x^2-4x-6}\)
Mng giúp mình vs ạ!!!
a/
ĐKXĐ: \(x\ge\frac{1}{4}\)
\(\Leftrightarrow\sqrt{5x+1}\le\sqrt{4x-1}+3\sqrt{x}\)
\(\Leftrightarrow5x+1\le13x-1+6\sqrt{x\left(4x-1\right)}\)
\(\Leftrightarrow3\sqrt{x\left(4x-1\right)}\ge1-4x\)
Do \(x\ge\frac{1}{4}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\) BPT luôn đúng
Vậy nghiệm của BPT đã cho là \(x\ge\frac{1}{4}\)
b/
ĐKXĐ: \(\left[{}\begin{matrix}x\ge\frac{-5+2\sqrt{5}}{5}\\x\le\frac{-5-2\sqrt{5}}{5}\end{matrix}\right.\)
Đặt \(\sqrt{5x^2+10x+1}=t\ge0\Rightarrow x^2+2x=\frac{t^2-1}{5}\)
BPT trở thành:
\(t\ge7-\frac{t^2-1}{5}\Leftrightarrow t^2+5t-36\ge0\)
\(\Rightarrow\left[{}\begin{matrix}t\le-9\left(l\right)\\t\ge4\end{matrix}\right.\)
\(\Rightarrow\sqrt{5x^2+10x+1}\ge4\)
\(\Leftrightarrow5x^2+10x-15\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)
c/
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow x^2-4+1-\sqrt{x-1}+2-\sqrt{2x}< 0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\frac{x-2}{1+\sqrt{x-1}}-\frac{2\left(x-2\right)}{2+\sqrt{2x}}< 0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{1}{1+\sqrt{x-1}}-\frac{2}{2+\sqrt{2x}}\right)< 0\)
\(\Leftrightarrow\left(x-2\right)\left(x+\frac{\sqrt{x+1}}{1+\sqrt{x-1}}+\frac{\sqrt{2x}}{2+\sqrt{2x}}\right)< 0\)
\(\Leftrightarrow x-2< 0\Rightarrow x< 2\) (phần trong ngoặc to luôn dương)
Vậy nghiệm của BPT là \(1\le x< 2\)
Giải phương trình :
\(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)
MN giúp mk nhanh với ạ
+) \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\left(1\right)\)
+) Lập phương 2 vế ta được :
\(2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\left(2\right)\)
Thay ( 1 ) vào ( 2 ) ta có :
\(\sqrt[3]{x^2-1}.\sqrt[3]{5x}=x\)
\(\Rightarrow4x^3-5x=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm\frac{\sqrt{5}}{2}\end{cases}}\)
P/s : ko có tgian làm full . Thông cảm nhen ^-^
(x-\(\dfrac{1}{3}\))2 - \(\dfrac{1}{2}\) = \(1\dfrac{3}{4}\)
\(\dfrac{x-3}{-2}\)=\(\dfrac{-8}{x-3}\)
\(\dfrac{9}{x}\)=\(\dfrac{-35}{105}\)
Giusp em với ạ
câu a :
\(\left(x-\dfrac{1}{3}\right)^2-\dfrac{1}{2}=1\dfrac{3}{4}\\ \left(x-\dfrac{1}{3}\right)^2-\dfrac{1}{2}=\dfrac{7}{4}\\ \left(x-\dfrac{1}{3}\right)^2=\dfrac{1}{4}+\dfrac{1}{2}\\ \left(x-\dfrac{1}{3}\right)^2=\dfrac{9}{4}\\ x-\dfrac{1}{3}=\sqrt{\dfrac{9}{4}}\\ x-\dfrac{1}{3}=\dfrac{3}{2}\\ x=\dfrac{3}{2}+\dfrac{1}{3}\\ x=\dfrac{11}{6}\)
câu b :
\(\dfrac{x-3}{-2}=\dfrac{-8}{x-3}\\ \Rightarrow\left(x-3\right)\cdot\left(x-3\right)=\left(-2\right)\cdot\left(-8\right)\\ \Rightarrow\left(x-3\right)^2=16\\ x-3=\sqrt{16}\\ x-3=4\\ x=4+3\\ x=7\)
câu c :
\(\dfrac{9}{x}=\dfrac{-35}{105}\\ \Rightarrow\left(-35\right)\cdot x=9\cdot105\\ \left(-35\right)\cdot x=945\\ x=945\div\left(-35\right)\\ x=-27\)
1) 2 x +1/2=5/3. 2) 1/7 +4/5x=5/3. 3)3/5-3/5x=1/7
4)5/6-3x= 3/4. 5) 5/3-1/2 x=3/7. 6) 5x+1/2 = 2/3
Giúp em nhanh với ạ tại vì tối em phải đi học rồi ạ
`@` `\text {Ans}`
`\downarrow`
`1)`
\(2x+\dfrac{1}{2}=\dfrac{5}{3}\)
`\Rightarrow`\(2x=\dfrac{5}{3}-\dfrac{1}{2}\)
`\Rightarrow`\(2x=\dfrac{7}{6}\)
`\Rightarrow`\(x=\dfrac{7}{6}\div2\)
`\Rightarrow`\(x=\dfrac{7}{12}\)
Vậy, `x = 7/12`
`2)`
\(\dfrac{1}{7}+\dfrac{4}{5}x=\dfrac{5}{3}\)
`\Rightarrow`\(\dfrac{4}{5}x=\dfrac{5}{3}-\dfrac{1}{7}\)
`\Rightarrow`\(\dfrac{4}{5}x=\dfrac{32}{21}\)
`\Rightarrow`\(x=\dfrac{32}{21}\div\dfrac{4}{5}\)
`\Rightarrow`\(x=\dfrac{40}{21}\)
Vậy, `x = 40/21`
`3)`
\(\dfrac{3}{5}-\dfrac{3}{5}x=\dfrac{1}{7}\)
`\Rightarrow`\(\dfrac{3}{5}x=\dfrac{3}{5}-\dfrac{1}{7}\)
`\Rightarrow`\(\dfrac{3}{5}x=\dfrac{16}{35}\)
`\Rightarrow`\(x=\dfrac{16}{35}\div\dfrac{3}{5}\)
`\Rightarrow`\(x=\dfrac{16}{21}\)
Vậy, `x = 16/21`
`4)`
\(\dfrac{5}{6}-3x=\dfrac{3}{4}\)
`\Rightarrow`\(3x=\dfrac{5}{6}-\dfrac{3}{4}\)
`\Rightarrow`\(3x=\dfrac{1}{12}\)
`\Rightarrow`\(x=\dfrac{1}{12}\div3\)
`\Rightarrow`\(x=\dfrac{1}{36}\)
Vậy, `x = 1/36`
`5)`
\(\dfrac{5}{3}-\dfrac{1}{2}x=\dfrac{3}{7}\)
`\Rightarrow`\(\dfrac{1}{2}x=\dfrac{5}{3}-\dfrac{3}{7}\)
`\Rightarrow`\(\dfrac{1}{2}x=\dfrac{26}{21}\)
`\Rightarrow`\(x=\dfrac{26}{21}\div\dfrac{1}{2}\)
`\Rightarrow`\(x=\dfrac{52}{21}\)
Vậy, `x = 52/21`
`6)`
\(5x+\dfrac{1}{2}=\dfrac{2}{3}\)
`\Rightarrow`\(5x=\dfrac{2}{3}-\dfrac{1}{2}\)
`\Rightarrow`\(5x=\dfrac{1}{6}\)
`\Rightarrow`\(x=\dfrac{1}{6}\div5\)
`\Rightarrow`\(x=\dfrac{1}{30}\)
Vậy, `x = 1/30.`
tính \(\lim\limits_{x\rightarrow1}\dfrac{2-\sqrt{2x-1}.\sqrt[3]{5x+3}}{x-1}\) mn giúp mk với ạ
\(\lim\limits_{x\rightarrow1}\dfrac{2-\sqrt[]{2x-1}\sqrt[3]{5x+3}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{2-2\sqrt[]{2x-1}+2\sqrt[]{2x-1}-\sqrt[]{2x-1}.\sqrt[3]{5x+3}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{2\left(1-\sqrt[]{2x-1}\right)+\sqrt[]{2x-1}\left(2-\sqrt[3]{5x+3}\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{4\left(x-1\right)}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}\left(x-1\right)}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left(-\dfrac{4}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}\right)\)
\(=-\dfrac{4}{1+1}-\dfrac{5\sqrt[]{1}}{4+4+4}=-\dfrac{29}{12}\)