1,cho x,y,z>0 và\(xyz=\frac{16}{x+y+z}\)
\(CM:\left(x+y\right)\left(x+z\right)\ge8\)
Cho 3 số dương x,y,z thoả mãn \(xyz-\frac{16}{x+y+z}=0\)
Chứng minh: \(\left(x+y\right)\left(x+z\right)\ge8\)
Cho 3 số dương x,y,z thoả mãn \(xyz-\frac{16}{x+y+z}=0\)
Chứng minh rằng \(\left(x+y\right)\left(x+z\right)\ge8\)
1) Cho x, y, z > 0 thỏa mãn \(xyz-\frac{16}{x+y+z}=0\)
Chứng minh rằng: \(\left(x+y\right)\left(x+z\right)\ge8\)
2) Cho a, b, c > 0 thỏa mãn a + b + c = 1
Chứng minh rằng \(b+c\ge16abc\)
cho x y z > 0 và xyz=1. Tìm Min của \(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)
dễ mà bạn :))) gáy tí , sai thì thôi
\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)
\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)
\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc
EZ :)))
nhưng làm thế thì ko bảo toàn đc dấu bất đẳng thức mà
TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ VÀO TỪNG BDT SAU SẼ ĐƯỢC:
Có: \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge3\sqrt[3]{\frac{x^3\left(1+x\right)\left(1+y\right)}{64\left(1+x\right)\left(1+y\right)}}\)
=> \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge\frac{3x}{4}\)
CMTT TA CŨNG SẼ ĐƯỢC: \(\hept{\begin{cases}\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge\frac{3z}{4}\end{cases}}\)
=> TA CỘNG TỪNG VẾ 3 BĐT ĐÓ LẠI SẼ ĐƯỢC:
\(\Rightarrow P+\frac{1+x}{4}+\frac{1+y}{4}+\frac{1+z}{4}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P+\frac{x+y+z+3}{4}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{2\left(x+y+z\right)-3}{4}\)
TA LẠI ÁP DỤNG BĐT CAUCHY 3 SỐ 1 LẦN NỮA SẼ ĐƯỢC:
\(\Rightarrow P\ge\frac{2.3\sqrt[3]{xyz}-3}{4}\)
\(\Rightarrow P\ge\frac{2.3-3}{4}=\frac{6-3}{4}=\frac{3}{4}\) (DO \(xyz=1\))
DẤU "=" XẢY RA <=> \(x=y=z\)
MÀ: \(xyz=1\Rightarrow x=y=z=1\)
VẬY P MIN \(=\frac{3}{4}\Leftrightarrow x=y=z=1\)
Cho x y z > 0 và xyz=1.Tìm \(P=\frac{x^3}{\left(1+x^2\right)\left(1+y^2\right)}a+\frac{y^3}{\left(1+y^2\right)\left(1+z^2\right)}+\frac{z^3}{\left(1+z^2\right)\left(1+x^2\right)}\)
dùng bunhia cho phần mẫu số là ra
Cho x,y,z>0; xyz=1. Tìm Min H=\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(x+z\right)}+\frac{1}{z^3\left(x+y\right)}\)
Ta có:
\(H=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
\(=\frac{\frac{1}{x^2}}{x\left(y+z\right)}+\frac{\frac{1}{y^2}}{y\left(z+x\right)}+\frac{\frac{1}{z^2}}{z\left(x+y\right)}\)
\(=\frac{\left(\frac{1}{x}\right)^2}{xy+zx}+\frac{\left(\frac{1}{y}\right)^2}{yz+xy}+\frac{\left(\frac{1}{z}\right)^2}{zx+yz}\)
Áp dụng BĐT Bunyakovsky dạng cộng mẫu ta được:
\(H\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(\frac{xy+yz+zx}{xyz}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}\)
\(=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi: x = y = z = 1
Vậy Min(H) = 3/2 khi x = y = z = 1
Cho x,y,z>0 thỏa mãn xyz=1 Tìm GTLN
\(A=\frac{1}{\left(3x+1\right)\left(y+z\right)+x}+\frac{1}{\left(3y+1\right)\left(x+z\right)+y}+\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
We have:
\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)
Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)
Dau '=' xay ra khi \(x=y=z=1\)
Cho x, y, z > 0. Cmr: \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z+6\)
Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:
A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)
\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)
Dấu "=" xảy ra khi x = y = z = 1
Cho x,y,z>0 thỏa mãn xy+yz+xz=xyz. CMR :
\(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{X^3\left(1+y\right)\left(1+z\right)}+\frac{xz}{y^3\left(1+z\right)\left(1+x\right)}\) lớn hơn hoặc bằng \(\frac{1}{16}\)
Help me ... Plzzz
\(xy+yz+zx=xyz\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì
\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)
Ta co:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)
Từ đây ta co:
\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)