Những câu hỏi liên quan
Trương Tuệ Nga
Xem chi tiết
Cô Hoàng Huyền
6 tháng 11 2017 lúc 17:09

Giả sử   \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.

Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)

TH1: Nếu trong a và b có một số chẵn, một số lẻ:

Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)

\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)

Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)

\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.

Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.

Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.

TH2: Nếu cả a và b đều lẻ

\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.

Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1) 

Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)

Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.

Vậy k luôn bằng 5 và nó là số nguyên tố.

Trần Thị Nhung
Xem chi tiết
NGƯỜI YÊU  CŨ CỦA BẠN
Xem chi tiết
Nobita Kun
Xem chi tiết
Ngô Bảo Châu
Xem chi tiết
Nobita Kun
Xem chi tiết
Nobita Kun
Xem chi tiết
Trương Tuấn Nghĩa
2 tháng 5 2018 lúc 22:18

Bài này đề thi IMO của hs lớp 12 sao lại hỏi ở đây

trần minh khôi
Xem chi tiết
Đỗ Tuệ Lâm
11 tháng 5 2022 lúc 4:42

BN THAM KHẢO:

undefined

 

Đào Thu Hoà
Xem chi tiết
alibaba nguyễn
16 tháng 1 2019 lúc 9:05

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

alibaba nguyễn
16 tháng 1 2019 lúc 13:21

Câu 2 làm hoi dài nên lười

tth_new
1 tháng 9 2019 lúc 19:52

Câu 2 em nghĩ là dùng dồn biến.Câu 2 nếu làm kỹ sẽ rất dài do đó em làm khá tắt, vì vậy không thể tránh khỏi những sai sót khi quy đồng, chị tự kiểm tra lại:P

Giả sử c = min{a,b,c} suy ra \(1\ge3c^2+2c^3\Leftrightarrow0< c\le\frac{1}{2}\)

Chọn t > 0 thỏa mãn: \(2t^2+2t^2c=a^2+b^2+2abc\Leftrightarrow2t^2-\left(a^2+b^2\right)=2c\left(ab-t^2\right)\)

Giả sử \(ab>t^2\Rightarrow2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (trái với giả us73)

Vậy giả sử sai hay \(ab\le t^2\text{ và }a^2+b^2\ge2t^2\ge2ab\)

Đặt \(f\left(a;b;c\right)=ab+bc+ca-abc\)

Xét hiệu \(d=f\left(a;b;c\right)-f\left(t;t;c\right)\)

\(=\left(ab-t^2\right)+c\left(a+b-2t\right)-c\left(ab-t^2\right)\)

\(=\left(1-c\right)\left(ab-t^2\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)

\(=\left(1-c\right)\left(ab-t^2\right)+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)

\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)

\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)\left(1-c\right)}{a+b+2t}\)

\(=\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)\left[\frac{1}{2c}+\frac{1}{a+b+2t}\right]\le0\)

Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=t^2+2tc-t^2c\). Ta cần tìm max của f(t;t;c). Mặt khác từ cách chọn t ta thấy:

\(2t^2+c^2+2t^2c=1\Leftrightarrow t=\sqrt{\frac{1-c}{2}}\). Do đó 

\(f\left(t;t;c\right)=\frac{1-c}{2}+2\sqrt{\frac{1-c}{2}}.c-\frac{\left(1-c\right)c}{2}\) với \(0< c\le\frac{1}{2}\)

Dễ thấy f(t;t;c) là hàm đồng biến với \(0< c\le\frac{1}{2}\) nên f(t;t;c) đạt max tại c = 1/2. Khi đó \(f\left(t;t;c\right)=\frac{5}{8}\)

Vậy.....