Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Daffodil Clover
Xem chi tiết
Kiệt Nguyễn
16 tháng 4 2020 lúc 16:40

Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)

Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:

\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)

\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)

Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ

\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ

Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)

Vậy a = 1; b = -8

Khách vãng lai đã xóa
gấukoala
Xem chi tiết
Đặng Ngọc Quỳnh
10 tháng 6 2021 lúc 18:28

giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)

\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)

\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)

Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)

\(\Rightarrow17a+3b+c=6a+b=0\)

\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)

Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)

pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)

Khách vãng lai đã xóa
OoO Kún Chảnh OoO
Xem chi tiết
Lê Vương Đạt
Xem chi tiết
Kiệt Nguyễn
4 tháng 3 2020 lúc 11:47

a) Phương trình có nghiệm bằng 1 khi \(1+a-4-4=0\)

\(\Rightarrow a=7\)

b) Khi a = 7 thì phương trình trở thành \(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow-x^3-7x^2+4x+4=0\)

\(\Leftrightarrow\left(-x^3-8x^2-4x\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow-x\left(x^2+8x+4\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(x^2+8x+4\right)=0\)

+) 1 - x = 0 thì x = 1

+) \(x^2+8x+4=0\)

\(\Leftrightarrow x^2+8x+16-12=0\Leftrightarrow\left(x+4\right)^2=12\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=\sqrt{12}\\x+4=-\sqrt{12}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{12}-4\\x=-\sqrt{12}-4\end{cases}}\)

Vậy phương trình có 3 nghiệm \(\left\{1;\pm\sqrt{12}-4\right\}\)

Khách vãng lai đã xóa
Nguyễn Xuân Thành
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 7:24

\(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)

Gọi \(x_1\) là nghiệm còn lại của pt đã cho

Theo Vi-ét, ta có

\(\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1\left(3+2\sqrt{2}\right)=\dfrac{1}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1=\dfrac{1}{a\left(3+2\sqrt{2}\right)}=\dfrac{3-2\sqrt{2}}{a}\end{matrix}\right.\)

Thế pt dưới lên pt trên, ta được:

\(3+2\sqrt{2}+\dfrac{3-2\sqrt{2}}{a}=-\dfrac{b}{a}\\ \Leftrightarrow a\left(3+2\sqrt{2}\right)-3-2\sqrt{2}=-b-6\\ \Leftrightarrow\left(3+2\sqrt{2}\right)\left(a-1\right)=-b-6\)

Vì a,b hữu tỉ nên \(a-1;-b-6\) hữu tỉ

Mà \(3+2\sqrt{2}\) vô tỉ nên \(a-1=0\Leftrightarrow a=1\)

\(\Leftrightarrow-b-6=0\Leftrightarrow b=-6\)

Vậy \(\left(a;b\right)=\left(1;-6\right)\)

 

oOo Min min oOo
Xem chi tiết
Hùng Nguyên Phạm Nguyễn
6 tháng 7 2018 lúc 15:18

làm đi

văn dũng
27 tháng 3 2020 lúc 9:29

tôi cũng là roronoa zoro đây

Khách vãng lai đã xóa
sún 2k4
Xem chi tiết
lý canh hy
19 tháng 9 2018 lúc 17:33

đặt \(a=1-\sqrt{2}\),ta có

\(1-a=\sqrt{2}\)\(\Rightarrow\left(1-a\right)^2=2\)

\(\Rightarrow a^2-2a+1=2\Rightarrow a^2-2a-1=0\)

\(\Rightarrow x^2-2x-1=0\)nhận \(1-\sqrt{2}\)là nghiệm

\(\Rightarrow b=-2;c=-1\)

Đoàn Đỗ Đăng Khoa
Xem chi tiết
Ngô Bá Hùng
8 tháng 3 2022 lúc 21:29

\(1+\sqrt{2}\) kia là cái j nhỉ