tìm số hữu tỉ a,b biết : \(x^3+ãx^2+b+2=0\)biết \(x=1+\sqrt{2}\)là một nghiệm của phương trình
Cho phương trình \(ax^2+bx+1=0\), với a,b là các số hữu tỉ. Tìm a,b biết x=\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình.
Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)
Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:
\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)
Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ
\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ
Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)
Vậy a = 1; b = -8
Tìm các nghiệm của phương trình (ax2+bx+c)(cx2+bx+a)=0 biết a,b,c là số hữu tỉ a,c khác 0 và \(x=\left(\sqrt{2}+1\right)^2\)là nghiệm của phương trình này
giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)
\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)
\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)
Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)
\(\Rightarrow17a+3b+c=6a+b=0\)
\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)
Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)
pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)
biết phương trình x^2 +bx+c = 0 với b,c là các số hữu tỉ , có một nghiệm là \(\frac{1}{2}+\frac{\sqrt{2}}{4}\)
Tìm các cặp số (b;c)
Cho phương trình (ẩn x ,tham số a)
\(A=x^3+ãx^2-4x-4=0\)
a) Tìm a để phương trình có một nghiệm là x=1
b) Với giá trị a vừa tìm được, hãy tìm các nghiệm còn lại của phương trình trên
a) Phương trình có nghiệm bằng 1 khi \(1+a-4-4=0\)
\(\Rightarrow a=7\)
b) Khi a = 7 thì phương trình trở thành \(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow-x^3-7x^2+4x+4=0\)
\(\Leftrightarrow\left(-x^3-8x^2-4x\right)+\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow-x\left(x^2+8x+4\right)+\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(x^2+8x+4\right)=0\)
+) 1 - x = 0 thì x = 1
+) \(x^2+8x+4=0\)
\(\Leftrightarrow x^2+8x+16-12=0\Leftrightarrow\left(x+4\right)^2=12\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=\sqrt{12}\\x+4=-\sqrt{12}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{12}-4\\x=-\sqrt{12}-4\end{cases}}\)
Vậy phương trình có 3 nghiệm \(\left\{1;\pm\sqrt{12}-4\right\}\)
Tìm các nghiệm của pt (ax^2+bx+c)(cx^2+bx+a)=0 biết a,b,c là các số hữu tỉ (a,c khác 0) và x=($\sqrt{2}$+1)^2 là một nghiệm của pt này
Cho \(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\) là 1 nghiệm của phương trình: \(ax^2+bx+1\). Với a, b là các số hữu tỉ. Tìm a và b
\(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)
Gọi \(x_1\) là nghiệm còn lại của pt đã cho
Theo Vi-ét, ta có
\(\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1\left(3+2\sqrt{2}\right)=\dfrac{1}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1=\dfrac{1}{a\left(3+2\sqrt{2}\right)}=\dfrac{3-2\sqrt{2}}{a}\end{matrix}\right.\)
Thế pt dưới lên pt trên, ta được:
\(3+2\sqrt{2}+\dfrac{3-2\sqrt{2}}{a}=-\dfrac{b}{a}\\ \Leftrightarrow a\left(3+2\sqrt{2}\right)-3-2\sqrt{2}=-b-6\\ \Leftrightarrow\left(3+2\sqrt{2}\right)\left(a-1\right)=-b-6\)
Vì a,b hữu tỉ nên \(a-1;-b-6\) hữu tỉ
Mà \(3+2\sqrt{2}\) vô tỉ nên \(a-1=0\Leftrightarrow a=1\)
\(\Leftrightarrow-b-6=0\Leftrightarrow b=-6\)
Vậy \(\left(a;b\right)=\left(1;-6\right)\)
Cho biết x = \(\sqrt{2}\) là 1 nghiệm của phương trình x3 + ax2 + bx + c = 0 với các hệ số hữu tỉ. Tìm các nghiệm còn lại
tôi cũng là roronoa zoro đây
Bài 1 Tìm các số hữu tỉ b,c biết rằng \(1-\sqrt{2}\)là nghiệm của phương trình \(x^2+bx+c=0\)
mn ơi làm giúp mik vs ạ!!! <3<3
đặt \(a=1-\sqrt{2}\),ta có
\(1-a=\sqrt{2}\)\(\Rightarrow\left(1-a\right)^2=2\)
\(\Rightarrow a^2-2a+1=2\Rightarrow a^2-2a-1=0\)
\(\Rightarrow x^2-2x-1=0\)nhận \(1-\sqrt{2}\)là nghiệm
\(\Rightarrow b=-2;c=-1\)
cho phương trình bậc 2:ax^2+bx+c=0 (a,b,c là số hữu tỉ và a khác 0).cho biết phương trình 1+√2 .tìm nghiệm phương trình