Tìm điều kiện của tham số m để pt: |x-1|(x-3)=m có đúng 3 nghiệm
1/ Tìm các giá trị của tham số m để bpt ( m-1) x^2- ( m-1) x+1>0 nghiệm đúng vs mọi giá trị của x. 2/ Tìm giá trị của tham số m để pt x^2 - ( m-2) x+m^2 -4m=0 có 2 nghiệm trái dấu. 3/ Tìm giá trị của tham số m để pt x^2 -mx+1=0 có 2 nghiệm phân biệt.
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
Tìm tất cả các giá trị của tham số m để pt x^2-(m-1)*x+4*m^2-m=0 có hai nghiệm trái dấu X1, X2 thỏa mãn điều kiện
2*(X1+X2)+3*x1*x2<2
cho pt: mx +3m=3x-2 (1)
a) tìm m để pt(1) tương đương với pt (x-2)^2-x(x-3)-3=0 (2)
b)tìm điều kiện m để pt (1) vô nghiệm
c)tìm m để pt (1) có nghiệm duy nhất nguyên
Tìm điều kiện của tham số m để phương trình m x 2 – 2 ( m – 1 ) x + m − 3 = 0 có nghiệm
A. m ≥ 1
B. m > 1
C. m ≥ −1
D. m ≤ −1
Phương trình mx2 – 2(m – 1)x + m − 3 = 0
(a = m; b = −2(m – 1); c = m – 3)
TH1: m = 0 ta có phương trình
2x – 3 = 0 ⇔ 2x = 3 ⇔ x = 3 2
TH2: m ≠ 0, ta có ∆ = b2 – 4ac = 4 (m – 1)2 – 4m. (m – 3)
= 4m2 – 8m + 4 – 4m2 + 12 = 4m + 4
Để phương trình đã cho có nghiệm thì ∆ ≥ 0
⇔ 4m + 4 ≥ 0 ⇔ 4m ≥ −4 ⇔ m ≥ −1
Vậy để phương trình đã cho có nghiệm thì m ≥ −1
Đáp án cần chọn là: C
3.3. Cho pt: x ^ 2 - 4x + m = 0 (1). a) Tìm điều kiện của m để pt (1) có hai nghiệm phân biệt . b) Giải pt (1) với m = 3 .
Lời giải:
a. Để pt có 2 nghiệm phân biệt thì: $\Delta'=(-2)^2-m>0$
$\Leftrightarrow 4-m>0$
$\Leftrightarrow m< 4$
b. Với $m=3$ thì pt trở thành: $x^2-4x+3=0$
$\Leftrightarrow (x-1)(x-3)=0$
$\Leftrightarrow x-1=0$ hoặc $x-3=0$
$\Leftrightarrow x=1$ hoặc $x=3$
Tìm điều kiện của tham số m để đt y = 2mx - 4m +3 (p) cắt (p) tại 2 điểm phân biệt có hoành độ lớn hơn 1
b) tìm m để Pt : mx^2 + 2 (m-2)x + m - 3 =0 có 2 nghiệm x1,x2 sao cho x1/x2 + x2/x1 =3
c) Tìm m để Pt : x^2 -2mx + m^2 -m =0 có 2 nghiệm x1,x2 thoả : x1^2 + x2^2 = 3x1x2
Giúp mình với ạ!!! Mình cảm ơn rất nhiều
Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi
tìm các giá trị của tham số m để pt \(\left(m-2\right)x^4-2\left(m+1\right)x^2-3=0\) có đúng 2 nghiệm phân biệt
Với \(m=2\Rightarrow6x^2+3=0\) (vô nghiệm)
Với \(m\ne2\) đặt \(x^2=t\ge0\Rightarrow\left(m-2\right)t^2-2\left(m+1\right)t-3=0\) (1)
Ứng với mỗi \(t>0\Rightarrow\) luôn có 2 giá trị x phân biệt tương ứng thỏa mãn
\(\Rightarrow\) Pt đã cho có đúng 2 nghiệm pb khi và chỉ khi (1) có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow-3\left(m-2\right)< 0\Leftrightarrow m>2\)
Cho phương trình
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1=0\)0
Với điều kiện của m để pt có 2 nghiệm , tìm hệ thức liên hệ giữa x1, x2 đọc lập đối với tham số m
ĐK:\(m\ne1\)
Phương trình có 2 nghiệm \(\Leftrightarrow\)đen-ta\(\ge0.\)
\(\Leftrightarrow4m^2-24m+36-4m^2+4\ge0.\)
\(\Leftrightarrow-24m+40\ge0.\)
\(\Leftrightarrow m\le\frac{5}{3}.\)
Học tốt
ý 2 nek: áp dụng hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{2m-6}{m-1}\\x_1x_2=\frac{m+1}{m-1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\x_1x_2=1-\frac{2}{m-1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\2x_1x_2=2-\frac{4}{m-1}\end{cases}}\)
x1+x2-2x1x2=0.
vậy x1,x2 độc lập đối với m
học tốt
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1=0\left(I\right)\)
\(\left(a=m-1;b'=-\left(m-3\right);c=m+1\right)\)
Để pt (I) là pt bậc 2 \(\Leftrightarrow a\ne0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)(*)
Xét \(\Delta'=\left[-\left(m-3\right)\right]^2-\left(m-1\right)\left(m+1\right)\)
\(=m^2-6m+9-m^2+1\)
\(=10-6m\)
Để pt (I) có 2 nghiệm \(\Delta'\ge0\Leftrightarrow10-6m\ge0\Leftrightarrow m\le\frac{5}{3}\)
Kết hợp vs đk (*) \(\Rightarrow m\ne1;m\le\frac{5}{3}\)
Áp dụng hệ thưc Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{2\left(m-3\right)}{m-1}\left(1\right)\\x_1.x_2=\frac{c}{a}=\frac{m+1}{m-1}\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\left(x_1+x_2\right)\left(m-1\right)=2m-6\)
\(\Leftrightarrow mx_1-x_1+mx_2-x_2=2m-6\)
\(\Leftrightarrow m\left(x_1+x_2-2\right)=x_1+x_2-6\)
\(\Leftrightarrow m=\frac{x_1+x_2-6}{x_1+x_2-2}\)
Thay vào (2) \(\Rightarrow x_1.x_2=\left(\frac{x_1+x_2-6}{x_1+x_2-2}+1\right):\left(\frac{x_1+x_2-6}{x_1+x_2-2}-1\right)\)
\(\Leftrightarrow x_1.x_2=\left(\frac{x_1+x_2-6+x_1+x_2-2}{x_1+x_2-2}\right):\left(\frac{x_1+x_2-6-x_1-x_2+2}{x_1+x_2-2}\right)\)
\(\Leftrightarrow x_1.x_2=\frac{2x_1+2x_2-8}{-4}\)
\(\Rightarrow-4x_1.x_2-2x_1-2x_2+8=0\)
Vậy \(m\ne1;m\le\frac{5}{3}\)thì pt có 2 nghiệm
\(-4x_1.x_2-2x_1-2x_2+8=0\)luôn độc lập vs m