Rút gọn biểu thức:
N=\(\frac{x\text{|}x-2\text{|}}{x^2+8x-20}\)+\(12x-3\)
Rút gọn biểu thức \(\frac{x|x-2|}{x^2+8x-20}+12x-3\)
\(A=\)\(\frac{x|x-2|}{x^2+8x-20}+12x-3.\)
\(=\frac{x|x-2|}{\left(x-2\right)\left(x+10\right)}+12x-3\)
Nếu \(x\ge2\Rightarrow x-2\ge0\Leftrightarrow|x-2|=x-2\)
\(\Rightarrow A=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{x}{x+10}+12x-3\)
Nếu \(x< 2\Rightarrow x-2< 0\Leftrightarrow|x-2|=-\left(x-2\right)\)
\(\Rightarrow A=\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{-x}{x+10}+12x-3\)
4. Rút gọn biểu thức\(\frac{x|x-2|}{x^2+8x-20}+12x-3\)
Rút gọn biểu thức
N=\(\frac{xIx-2I}{x^2+8x-20}\)+12x+8
Cho biểu thức: \(P=\frac{3x^2-x}{3x+2}:\frac{3x^3-x^2+12x-4}{x+2\left(x+1\right)}\)
\(\text{a) Rút gọn P}\)
\(\text{b) Tìm GTNN và GTLN của P}\)
dk 3x+2
P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)
dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)
P(x2+4) = x <=> Px2-x+4P=0
để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)
Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)
P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Ai giải giúp mấy bài toán vs
Bài 1:
A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)
B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)
Bài 2 rút gọn biểu thức
A=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0
B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)
Bài 3 cho biểu thức
P=\(\left(\frac{x-2}{x+2\text{√}x}+\frac{1}{\text{√}x+2}\right)\frac{\text{√}x+1}{\text{√}x-1}\)
a)Rút gọn P
b)tìm x để P=\(\text{√}x+\frac{5}{2}\)
bài 4 rút gọn biểu thức
A=\(\frac{1}{x+\text{√}x}+\frac{2\text{√}x}{x-1}-\frac{1}{x-\text{√}x}\)
B=\(\left(\frac{x}{x+3\text{√}x}+\frac{1}{\text{√}x+3}\right):\left(1-\frac{2}{\text{√}x}+\frac{6}{x+3\text{√}x}\right)\)
Bài 5
A=\(\left(\frac{2}{\text{√}x-3}-\frac{1}{\text{√}x+3}-\frac{x}{\text{√}x\left(x-9\right)}\right):\text{(√}x+3-\frac{x}{\text{√}x-3}\)
a)rút gọn A
b)tìm gtri x để A= -1/4
AI GIẢI GIÙM MÌNH ĐI MÌNH TẠ ƠN
Rút gọn: A=\(\frac{x. \text{Ix}-2I}{x^2+8x-20}\)
1. Rút gọn biểu thức A = \(\dfrac{\text{√ x + 1}}{\text{√ x − 1 }}-\dfrac{\text{√ x − 1}}{\text{√ x + 1}}+\dfrac{\text{8 √ x}}{\text{1 − x }}\)
2. Rút gọn biểu thức B = \(\dfrac{\text{√ x − x − 3}}{\text{x − 1 }}-\dfrac{\text{1}}{\text{√ x − 1 }}\) với x ≥ 0, x ≠ 1
Anh em giải hộ tui ok :v
Rút gọn biểu thức: ((xIx-2I)/(x2+8x-20))+12x-3 _______________
Ta có:\(\frac{\left[x\left(x-2\right)\right]}{x^2+8x-20}+12x-3=\frac{x\left(x-2\right)}{x^2-2x+10x-20}+12x-3\)
\(=\frac{x\left(x-2\right)}{x\left(x-2\right)+10\left(x-2\right)}+12x-3=\frac{x\left(x-2\right)}{\left(x+10\right)\left(x-2\right)}+12x-3\)
\(=\frac{x}{x+10}+12x-3=\frac{x+\left(12x-3\right).\left(x+10\right)}{x+10}=\frac{x+12x^2+120x-3x-30}{x+10}\)
\(=\frac{12x^2+118x-30}{x+10}\)