x2x chia hết cho 2 và chia hết cho 9 với x là số tự nhiên
Bài 1: Biểu thức sau có chia hết cho 3 không? Vì sao?
4a + 1 (biết rằng a là số tự nhiên chia cho 3 dư 2).
Bài 2: Tìm x ∈ N sao chi
a) 36 chia hết cho 3x + 1
b) 2x + 9 chia hết cho x + 2
Bài 3: Cho các số tự nhiên a và b thỏa mãn a + 2b chia hết cho 9. Chứng minh rằng các biểu thức sau cũng chia hết cho 9.
a) a + 11b
b) a + 38b
c) a - 7b (với a > b)
d) b. 10n + 6b - a trong đó n ∈ N và b > a.
1: a chia 3 dư 2 nên a=3k+2
4a+1=4(3k+2)+1
=12k+8+1
=12k+9=3(4k+3) chia hết cho 3
2:
a: 36 chia hết cho 3x+1
=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x là số tự nhiên
nên 3x+1 thuộc {1;4}
=>x thuộc {0;1}
b: 2x+9 chia hết cho x+2
=>2x+4+5 chia hết cho x+2
=>5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
mà x thuộc N
nên x=3
Chứng minh rằng :
a) n . ( n + 5 ) hoặc chia hết cho 25 hoặc không chia hết cho 5 với mọi n là các số tự nhiên.
b)( n + 2 ) . ( n + 9 ) hoặc chia hết cho 49 hoặc không chia hết cho 7 với mọi n là các số tự nhiên.
c) n2 + 5n + 4 hoặc chia hết cho 9 hoặc không chia hết cho 3 với mọi n là các số tự nhiên.
a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25
Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5
Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5
Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k2 + 55k) + 24 không chia hết cho 5
Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5
Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5
b,c tương tự:
4a7 + 15b chia hết cho 5 và 9
17ab chia hết cho 2 và 3 nhưng chia 5 dư 1
17ab là số tự nhiên
15b là số tự nhiên
4a7 là số tự nhiên
a, \(\overline{4a7}\) + \(\overline{15b}\) ⋮ 5 và 9
A = \(\overline{4a7}\) + \(\overline{15b}\)
A = 407 + a \(\times\) 10 + 150 + b
A = 557 + a \(\times\) 10 + b
A ⋮ 5 ⇔ b + 7 ⋮ 5 ⇒ b = 3; 8
A ⋮ 9 ⇔ 4+a+7+1+5+b ⋮ 9 ⇒ a+b+8 ⋮ 9 ⇒ a + b = 1; 10
Lập bảng ta có:
a+b | 1 | 10 |
b | 3 | 3 |
a | -2(loại) | 7 |
a+b | 1 | 10 |
b | 8 | 8 |
a | -7(loại) | 2 |
Theo bảng trên ta có các cặp chữ số a; b thỏa mãn đề bài là:
(a;b) = (7;3); (2;8)
b,B = \(\overline{17ab}\) ⋮2; 3 chia 5 dư 1
B : 5 dư 1 ⇒ b = 1; 6; B ⋮ 2 ⇒ b = 6
B ⋮ 3 ⇔ 1 + 7 + a + b ⋮ 3 ⇒ 8+a+6 ⋮ 3 ⇒ a+ 2 ⋮ 3 ⇒ a + 2 = 3; 6; 9;
Lập bảng ta có:
a + 2 | 3 | 6 | 9 |
a | 1 | 4 | 7 |
Theo bảng trên ta có: a = 1;4;7
Vậy B = 1716; 1746; 1776
Tìm số tự nhiên x biết :
a ) x2x chia hết cho cả 2 và 9
b ) x > 1 ; x và 210 là hai số nguyên tố cùng nhau
Các bạn giúp mình nha 🥰🥰🥰
a, ta có x2x chia hết cho 2=> x phải là số chẵn
xét x=2 =>222 không chia hết cho 9
x=4 =>424 không chia hết cho 9
x=6 =>626 không chia hết cho 9
x=8 =>828 chia hết cho 9 => số đó là 828
1. Tìm số tự nhiên nhỏ nhất chia hết cho 7 và khi chia cho 2,3,4,5 và 6 luôn có số dư là 1.
2. Tìm tất cả các số tự nhiên n sao cho
a) n chia hết cho 9 và n+1 chia hết cho 25
b) n chia hết cho 21 và n+1 chia hết cho 165
c) n chia hết cho 9, n +1 chia hết cho 25 và n+2 chia hết cho 4
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
1. n = 301
2.a) n = 99
b) không có
c) n = 774
cho a =(x+2009) .(x+2010) .Chứng minh rằng :a chia hết cho 2 ,với x là số tự nhiên
2 . Chứng tỏ rằng (ab) ̅ +(ba) ̅chia hết cho 11 với ab và ba là 2 số tự nhiên
a= (x+2009)(x+2010)
Vì x là stn chia hết cho 2
---> x+2009 là stn lẻ, còn x+2010 là stn chẵn.
Mà LẺ × CHẴN = CHẴN --> (x+2009)(x+2010) chia hết cho 2.
(ab) + (ba) với ab và ba là 2stn
( Mình ko ghi dấu gạch trên đầu vì nó rách việc quá mà mình sẽ ghi A và B nên mong bạn thông cảm)
Ta có:(AB) + (BA) = (10A+B) + (10B+A)
= (10A+A) + (10B+B)
= 11A + 11B
Chúng chia hết cho 11 --->(AB) +(BA) chia hết cho 11
cho a =(x+2009) .(x+2010) .Chứng minh rằng :a chia hết cho 2 ,với x là số tự nhiên
2 . Chứng tỏ rằng (ab) ̅ +(ba) ̅chia hết cho 11 với ab và ba là 2 số tự nhiên
có x+2009 và x+2010 là 2 số liên tiếp => 1 số là chẵn và một số là lẻ
mà 1 số chẵn nhân với 1 số lẻ luôn ra một số chẵn (cái này không cần phải chứng minh)
=> a luôn chia hết cho 2
https://olm.vn/hoi-dap/question/845606.html
Bài 1:
a, a chia hết cho 24, a chia hết cho 36, a chia hết cho 18 và 250<a<350
b, tìm số tự nhiên x, biết x chia hết cho 9, x chia hết cho 12 và 50<x<80
c, A = { x thuộc N / x chia hết cho 12, x chia hết cho 15, x chia hết cho 18 và 0<x<300 }
d, tìm số tự nhiên a lớn nhất, biết 240 chia hết cho a, 700 chia hết cho a
e, 144 chia hết cho x, 192 chia hết cho x và x>20
f, tìm số tự nhiên a, biết 126 chia hết cho a, 210 chia hết cho a và 15<a<30
g, tìm số tự nhiên a, biết 30 chia hết cho a và 45 chia hết cho a
1. Tìm số tự nhiên x biết: 3/8<x/13<2/5
2. Có bao nhiêu số tự nhiên có hai chữ số chia hết cho 2 và 3 mà ko chia hết cho 9.
3. Có bao nhiêu STN có 2 chữ số chia hết cho 2 mà ko chia hết cho 3 và 9
Giải được, đúng và nhanh nhất thì được chọn câu trả lời đó