Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Kim Anh
Xem chi tiết
Minhchau Trần
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 12 2021 lúc 0:02

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{1}{2}\left(x+y+x+z\right)=\dfrac{1}{2}\left(2x+y+z\right)\)

Tương tự: \(\sqrt{2y+xz}\le\dfrac{1}{2}\left(x+2y+z\right)\) ; \(\sqrt{2z+xy}\le\dfrac{1}{2}\left(x+y+2z\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(4x+4y+4z\right)=4\)

\(P_{max}=4\) khi \(x=y=z=\dfrac{2}{3}\)

Xyz OLM
31 tháng 12 2021 lúc 0:02

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)

\(=\sqrt{3.\left(4+xy+yz+zx\right)}\)

Đã biết x2 + y2 + z2 \(\ge\)xy + yz + zx

=> xy + yz + zx \(\le\dfrac{\left(x+y+z\right)^2}{3}\)

Khi đó \(P\le\sqrt{3\left(4+xy+yz+zx\right)}\le\sqrt{3\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}\)

= 4 

Dấu "=" xảy ra <=> x = 2/3 

camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:17

\(\sqrt{2x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{x+2y+z}{2}\\ \Leftrightarrow P=\sum\sqrt{2x+yz}\le\dfrac{x+2y+z+2x+y+z+x+y+2z}{2}=\dfrac{4\left(x+y+z\right)}{2}=2\cdot2=4\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Xyz OLM
30 tháng 12 2021 lúc 23:20

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(Bunyacovski)

\(=\sqrt{3\left[4+\left(xy+yz+zx\right)\right]}\)

\(\le\sqrt{3.\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3.\left(4+\dfrac{4}{3}\right)}\) = 4

Dấu "=" xảy ra <=> x = y = z = 2/3 

camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:09

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:10

\(\sqrt{5x^2+2xy+2y^2}=\sqrt{4x^2+2xy+y^2+x^2+y^2}\ge\sqrt{4x^2+2xy+y^2+2xy}=2x+y\)

\(\Rightarrow\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}\le\dfrac{1}{2x+y}=\dfrac{1}{x+x+y}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}\le\dfrac{1}{9}\left(\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{\sqrt{5z^2+2zx+2x^2}}\le\dfrac{1}{9}\left(\dfrac{2}{z}+\dfrac{1}{x}\right)\)

Cộng vế:

\(P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=1\)

\(P_{max}=1\) khi \(x=y=z=1\)

Cấn Minh Khôi
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2023 lúc 17:17

Chắc đề là \(x+y+z=3\)

Ta có: 

\(\left(2x+y+z\right)^2=\left(x+y+x+z\right)^2\ge4\left(x+y\right)\left(x+z\right)\)

\(\Rightarrow P\le\dfrac{x}{4\left(x+y\right)\left(x+z\right)}+\dfrac{y}{4\left(x+y\right)\left(y+z\right)}+\dfrac{z}{4\left(x+z\right)\left(y+z\right)}\)

\(\Rightarrow P\le\dfrac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{4\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\dfrac{xy+yz+zx}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Mặt khác:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)

\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}.\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)

\(=\dfrac{8}{9}\left(x+y+z\right)\left(zy+yz+zx\right)=\dfrac{8}{3}\left(xy+yz+zx\right)\)

\(\Rightarrow P\le\dfrac{xy+yz+zx}{2.\dfrac{8}{3}\left(xy+yz+zx\right)}=\dfrac{3}{16}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết