ưcln(2n+4 4n+6)
ưcln(2n+4 ; 4n+6)
ƯCLN (2n + 4 ; 4n+6)=
Ta có :2n+4=2n+2.2=2.(n+4)
4.n+6=2.2.n+2.3=2.(2.n+3)
suy ra ƯCLN(2.n+4;4.n+6)=2
ƯCLN(2n + 4; 4n + 6) = ...?
Đặt yCLN(2n+ 4 ; 4n + 6) = d
2n +4 chia hết cho d => 4n + 8 chia het cho d
4n + 6 chia het cho d
=> [(4n + 8) - (4n + 6)] chia het cho d
2 chia hết cho d => d = 2
Vậy UCLN(2n + 4 ; 4n + 6) = 2
a) tìm ƯCLN (2n+3 và 4n+6)
b) tìm ƯCLN (2n+3 và 4n +8 )
gọi m là ƯCLN (2n+3;4n+6)
=> 2n + 3 chia hết cho m
=> 2(2n+3) chia hết cho m
=> 4n+6 chia hết cho m
=> [(4n+6)-(4n+6)]chia hết cho m
còn phần sau thì bn tự lm tiếp nha
b,gọi x là ƯCLN(2n+3 và 4n +8)
=> 2n + 3 chia hết cho m
=> 2(2n+3) chia hết cho m
=> 4n+6 chia hết cho m
=> [(4n+8)-(4n+6)]chia hết cho m
=>2 chia hết cho m
còn phần sau bn tự lm típ nha
chúc bn hok tốt
Cho n ϵ N. Tìm: a) ƯCLN(n; n + 1)
b)ƯCLN( 2n + 1; 4n + 18)
Bài 3 : chứng tỏ:
a) ƯCLN (n,n+1)=1 b) ƯCLN(n, 2n+1) =1
c) ƯCLN(3n+1, 4n+1) =1 d) ƯCLN( 2n +3, 3n+4) =1
a) Giả sử ƯCLN(n,n+1)=d (d\(\in\)N*)
Nên n chia hết cho d \(\Rightarrow\)n+1-n=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1
n+1 chia hết cho d
Vậy ƯCLN(n,n+1)=1
b) Giả sử ƯCLN(n,2n+1)=d (d\(\in\)N*)
Nên n chia hết cho d
2n+1 chia hết cho d
Nên 2n chia hết cho d \(\Rightarrow\)2n+1-2n=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1
2n+1 chia hết cho d
Vậy ƯCLN(n,2n+1)=1
c) Giả sử ƯCLN(3n+1,4n+1)=d (d\(\in\)N*)
Nên 3n+1 chia hết cho d
4n+1 chia hết cho d
Nên 4(3n+1) chia hết cho d
3(4n+1) chia hết cho d
Nên 12n+4 chia hết cho d \(\Rightarrow\)12n+4-(12n+3)=1\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d=1
12n+3 chia hết cho d
Vậy ƯCLN(3n+1,4n+1)=1
Tìm ƯCLN của 2n+1 và 4n+3
Gọi d là ƯCLN (2n+1, 4n+3)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+2⋮d\\4n+3⋮d\end{cases}}\Rightarrow1⋮d\Rightarrow d=1\\ \)
Gọi \(ƯCLN\left(2n+1;4n+3\right)\) là \(d\left(d\ne0\right)\)
Theo bài ra ta có :
\(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+1\right)⋮d\\4n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+2⋮d\\4n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+3\right)-\left(4n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{1;-1\right\}\)
Vì \(d\)là \(ƯCLN\Rightarrow d=1\)
Vậy ...
Tìm ƯCLN của: 2n+3 và 4n+3
Gọi Ước chung lớn nhất của 2 số là m
Ta có : 4.(2n+3 ) = 8n+12
2.(4n+3) = 8n + 6
Ta có : 8n + 12 chia hết cho m
8n + 6 chia hết cho m
Suy ra : ( 8n + 12 ) - ( 8n + 6) chia hết cho m
Suy ra : 6 chia hết cho m
Vậy m thuộc Ư(6)
Suy ra : m thuộc { 1;2;3;6}
Mà m lớn nhất , suy ra m = 6
Duyệt đi , chúc bạn học giỏi
Tìm ƯCLN :
2n+3 và 4n+3