\(P=\frac{x+2y-3z}{x-2y+3z}\)
tinh giá trị p biết x;y;z tỉ lệ với 5;4;3
Tinh tong : S= x+2y +3z, biet rang : \(\frac{1}{x+2y}+\frac{1}{2y+3z}+\frac{1}{3z+z}=\frac{12x}{2y+3z}+\frac{24y}{3z+x}-\frac{36z}{x+2y}=2016\)
Cho P=\(\frac{x+2y-3z}{x-2y+3z}\)
Tính giá trị của P biết x,y,z tỉ lệ với 5,4,3
Có: x,y,z tỉ lệ với 5;4;3
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow x=5k;y=4k;z=3k\)
\(P=\frac{x+2y-3z}{x-2y+3z}\)
\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}\)
\(\Leftrightarrow P=\frac{4k}{6k}\)
\(\Leftrightarrow P=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
Biết x : y : z = 5 : 4 : 3 . Hỏi giá trị của biểu thức \(P=\frac{x+2y-3z}{x-2y+3z}+\frac{1}{3}\)
x:y:z=5:4:3=>x/5=y/4=z/3
\(\frac{x+2y-3z}{5+4.2-3.3}=\frac{x-2y+3z}{5-4.2+3.3}\Leftrightarrow\frac{x+2y-3z}{5+8-9}=\frac{x-2y+3z}{5-8+9}\)
\(\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}\Leftrightarrow\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)
\(\Rightarrow P=\frac{x+2y-3z}{x-2y+3z}+\frac{1}{3}=\frac{2}{3}+\frac{1}{3}=\frac{3}{3}=1\)
vay P=1
nhớ tick
Cho \(P=\frac{x+2y-3z}{x-2y+3z}\) . Tính giá trị của P, biết x,y,z tỉ lệ với các số 5;4;3
x; y; z tỉ lệ với 5; 4; 3
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)
\(\Rightarrow\frac{x+2y-3z}{5+8-9}=\frac{x-2y+3z}{5-8+9}=\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}\)
\(\Rightarrow\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)
Cho \(P=\frac{x+2y-3z}{x-2y+3z}\) . Tính giá trị của P biết các số x;y;z tỉ lệ với 5;4;3
Bài 1 : Tìm x , y , z biết : x +2y + 3z = \(\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
cho P = \(\frac{x+2y-3z}{x-2y+3z}\)
tính giá trị của P biết x,y,z tỉ lệ với 5:4:3
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k;y=4k;z=3k\)
=>\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)
x; y; z tỉ lệ với 5; 4; 3
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)
\(\Rightarrow\frac{x+2y-3z}{5+8-9}=\frac{x-2y+3z}{5-8+9}=\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}\)
\(\Rightarrow\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)
Lời giải:
Vì $x,y,z$ tỉ lệ với $5,4,3$ nên:
$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}$
Đặt $\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k; y=4k; z=3k$.
Khi đó:
$P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}$
$=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}$
biết x:y:z = 5:4:3. Tính giá trị biểu thức \(P=\frac{x+2y-3z}{x-2y+3z}+\frac{1}{3}\)