Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trịnh việt nguyên
Xem chi tiết
Trí Tiên亗
1 tháng 3 2020 lúc 20:22

A B C A' B' C' Hình vẽ chỉ mang tính chất minh họa

Ta có : \(\frac{AH}{AA'}=\frac{S_{ABH}}{S_{ABA'}}=\frac{S_{ACH}}{S_{ACA'}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\)   ( Tính chất dãy tỉ số bằng nhau, tỉ số diện tích )

Tương tự ta có :

\(\frac{BH}{BB'}=\frac{S_{AHB}+S_{BHC}}{S_{ABC}}\) , \(\frac{CH}{CC'}=\frac{S_{ACH}+S_{BHC}}{S_{SBC}}\)

Do đó :

\(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}=\frac{2\left(S_{ABH}+S_{AHC}+S_{BHC}\right)}{S_{ABC}}=\frac{2\cdot S_{ABC}}{S_{ABC}}=2\)

Vậy : \(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}=2\)

Khách vãng lai đã xóa
꧁WღX༺
Xem chi tiết
càfêđắng
Xem chi tiết
Nguyễn Anh Quân
17 tháng 12 2017 lúc 9:40

Có : AH/AA' = AH.(BA'+CA')/AA'.(BA'+CA') = 2S AHB + 2S AHC/2S ABC = S AHB + S AHC/S ABC

Tương tự : BH/BB' = S AHB + S BHC/S ABC

CH/CC' = S AHC + S CHB / S ABC

=> AH/AA' + BH/BB' + CH/CC' = 2.(S AHB + S AHC + S BHC/S ABC) = 2.1 = 2

=> ĐPCM

k mk nha

Núi non tình yêu thuần k...
Xem chi tiết
Nam Hoài
Xem chi tiết
êfe
Xem chi tiết
Nguyễn Văn Duy
Xem chi tiết
Nguyễn Thị Thu Hương
12 tháng 3 2017 lúc 18:31

mình 0 bt nhng ai chat nhìu thì kt bn với mình nha

Ly Tâm Mộc
13 tháng 3 2017 lúc 0:33

c)Vẽ Cx CC’. Gọi D là điểm đối xứng của A qua Cx                       

-Chứng minh được góc  BAD vuông, CD = AC, AD = 2CC’                 

 ta có: BD BC + CD                                            

-BAD vuông tại A nên: AB2+AD2 = BD2                                                 

     AB+ AD2 >=   (BC+CD)2                                                                

        AB+ 4CC’2 >= (BC+AC)2

                  4CC’2  >=(BC+AC)– AB2                                                                     

Tương tự:  4AA’2 >= (AB+AC)– BC2

                  4BB’2   (AB+BC)– AC                                                     

 4(AA’+ BB’+ CC’2)>=  (AB+BC+AC)2                                                                    

                              

meo meo
Xem chi tiết
Cô Hoàng Huyền
11 tháng 12 2017 lúc 11:05

Ta có : \(\frac{HA'}{AA'}=\frac{S_{HBC}}{S_{ABC}};\frac{HB'}{AB'}=\frac{S_{HAC}}{S_{ABC}};\frac{HC'}{AC'}=\frac{S_{HAB}}{S_{ABC}}\)

nên \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=\frac{S_{HBC}+S_{HAB}+S_{HAC}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Vậy \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

tien hung
7 tháng 4 2019 lúc 19:06

Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi

Thủy Phạm Thanh
Xem chi tiết