Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn bích thuỳ
Xem chi tiết
nguyễn bích thuỳ
Xem chi tiết
nguyễn bích thuỳ
Xem chi tiết
Hello Hello
Xem chi tiết
Hello Hello
Xem chi tiết
Phong trương
5 tháng 7 2019 lúc 9:57

ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)

mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)

chúc bạn học tốt

T.Ps
5 tháng 7 2019 lúc 9:57

#)Giải :

Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6

Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)

\(\Rightarrow a^2=6b^2\)

\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)

Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)

Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6

=> đpcm

Kiệt Nguyễn
5 tháng 7 2019 lúc 10:04

\(x^2=6\Leftrightarrow x=\sqrt{6}\)

Giả sử \(\sqrt{6}\)là số hữu tỉ, như vậy \(\sqrt{6}\)có thể viết được dưới dạng :

                \(\sqrt{6}=\frac{m}{n}\)với \(m,n\inℤ\),\(\left(m,n\right)=1\)

Suy ra \(m^2=6n^2\)(1), do đó \(m^2⋮3\). Ta lại có 3 là số nguyên tố nên \(m⋮3\)(2)

Đặt m = 3k \(\left(k\inℕ\right)\).Thay vào (1) ta được \(9k^2=6n^2\)nên \(3k^2=2n^2\)

suy ra \(5n^2⋮3\)

Do (5, 3) = 1 nên \(n^2⋮3\), do đó \(n⋮3\left(3\right)\)

Từ (2) và (3) suy ra m và n cùng chia hết cho 3, trái với \(\left(m,n\right)=1\)

Như vậy \(\sqrt{6}\)không là số hữu tỉ, do đó \(\sqrt{6}\)là số vô tỉ.

Vậy x là số vô tỉ hay không tồn tại số hữu tỉ x thỏa mãn đề bài (đpcm)

Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 15:37

Giả sử \(x+\sqrt{2}\) hữu tỉ thì \(x=-\sqrt{2}\) do \(\sqrt{2}\) vô tỉ

Do đó \(x\) vô tỉ

Vậy \(x^3+\sqrt{2}\) vô tỉ

Vậy ko tồn tại số thực x tm đề

Hmm cái này ko chắc :))

 

Nguyễn Thùy Chi
Xem chi tiết
Akai Haruma
16 tháng 10 2021 lúc 19:18

Lời giải:
$x^3+y^3+z^3=x+y+z+2020$

$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$

$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$

Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$

$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$

Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.

Vũ Thị Kim Oanh
Xem chi tiết
Trần Đức Thắng
28 tháng 6 2015 lúc 17:46

a, không tồn tại chắc vậy

Yaden Yuki
28 tháng 6 2015 lúc 20:10

a thì chắc không tồn tại rồi     

Còn b thì không biết

Nguyễn Trần Bắc Hải
14 tháng 8 2016 lúc 10:31

a ko tồn tại

b cũng Zậy

Big City Boy
Xem chi tiết