Tìm GTLN của biểu thức A= /x-2019/-/x-2018/
a) Tìm GTNN của biểu thức A = x − 2018 + − 100 + x − 2019
b) Tìm GTLN của biểu thức B = 4 − 5 x − 2 − 3 y + 12
Cho biểu thức \(C=\frac{2018}{x^2+2x+2019}\) . Tìm GTLN của C
\(C=\frac{2018}{x^2+2x+2019}=\frac{2018}{\left(x+1\right)^2+2018}\)
Ta có \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow\left(x+1\right)^2+2018\ge2018\)
\(\Rightarrow C\le1\)
Dấu "=" khi x = -1
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
\(C=\frac{2018}{\left(x^2+2x+1\right)+2018}=\frac{2018}{\left(x+1\right)^2+2018}\)
ta có \(\left(x+1\right)^2\ge0;\forall x\Rightarrow\left(x+1\right)^2+2018\ge2018\)
\(\Rightarrow C=\frac{2018}{\left(x+1\right)^2+2018}\le1\)
GTLN C= 1 khi và chỉ khi x=-1
Tìm GTLN,GTNN của biểu thức a,(x-2)^2+2019 b,(x-3)^2+(y-2)^2-2018 c,-(3-x)^100-3.(y+2)^200+2020. d,-|x-1|-2.(2y-1)^2+100
a) \(\left(x-2\right)^2+2019\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)
Dấu '=' xảy ra khi
\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2
b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\left(y-2\right)^2\ge0\forall y\)
Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2
c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)
Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)
\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)
Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)
\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)
Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)
\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2
d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)
Ta có: \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow-\left|x-1\right|\le0\forall x\)
Ta có: \(\left(2y-1\right)^2\ge0\forall y\)
\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)
Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)
\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)
Tìm GTLN của:
a) \(\frac{2018}{|x|+2019}\)
b) \(\frac{|x|+2018}{-2019}\)
a) Đặt \(A=\frac{2018}{|x|+2019}\)
Vì \(|x|\ge0;\forall x\)
\(\Rightarrow|x|+2019\ge0+2019;\forall x\)
\(\Rightarrow\frac{2018}{|x|+2019}\le\frac{2018}{2019};\forall x\)
Hay \(A\le\frac{2018}{2019};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy MIN \(A=\frac{2018}{2019}\Leftrightarrow x=0\)
b) Đặt \(B=\frac{|x|+2018}{-2019}\)
Vì \(|x|\ge0;\forall x\)
\(\Rightarrow|x|+2018\ge0+2018;\forall x\)
\(\Rightarrow\frac{|x|+2018}{-2019}\le\frac{-2018}{2019};\forall x\)
Hay \(B\le\frac{-2018}{2019};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vạy MIN \(B=\frac{-2018}{2019}\Leftrightarrow X=0\)
tìm GTLN A= /x-2019/-/x-2018/
\(A = | x - 2019 | - | x - 2018 |\)
\(A = | x - 2019 | - | x - 2018 | \)\(\le\)\(| x - 2019 - x + 2018 |\)\(= | - 1 | = 1\)
\(Dấu " = " xảy ra\)\(\Leftrightarrow\)\(x - 2019 = 0 hoặc x - 2018 = 0\)
\(\Rightarrow\)\(x = 2019 hoặc x = 2018\)
\(Max A = 1 \)\(\Leftrightarrow\)\(x = 2019 hoặc x = 2018\)
Tìm GTLN,GTNN của |x- 2018|+|x- 2019|+|x-2020|
Đặt \(A=\left|x-2018\right|+\left|x-2020\right|\)
\(\ge\left|\left(x-2018\right)+\left(2020-x\right)\right|=2\)
(Dấu "="\(\Leftrightarrow\left(x-2018\right)\left(2020-x\right)\ge0\)
\(\Leftrightarrow2018\le x\le2020\))
Vậy \(A_{min}=2\Leftrightarrow2018\le x\le2020\)
Đặt \(B=\left|x-2019\right|\ge0\)
(Dấu "="\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\))
Vậy \(B_{min}=0\Leftrightarrow x=2019\)
\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge2\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}2018\le x\le2020\\x=2019\end{cases}}\Leftrightarrow x=2019\))
Vậy \(BT_{min}=2\Leftrightarrow x=2019\)
Tìm GTNN;GTLN của
A=2019+x (x là số nguyên)
2018+x
B=2018*x+2019( x là số nguyên)
2018*x+2017
Tìm GTLN của biểu thức A=-x^4+2x^3-3x^2+4x+2018
\(A=-\left(x^4-2x^3+3x^2-4x-2018\right)=-\left[\left(x^4+x^2+4-2x^3+4x^2-4x\right)-2x^2\right]+2022\)
\(=-\left[\left(\left(x^2\right)^2+\left(x\right)^2+\left(2\right)^2-2\cdot x^2\cdot x+2\cdot x^2\cdot2-2\cdot x\cdot2\right)-2x^2\right]+2022\)
\(=-\left[\left(x^2-x+2\right)^2-2x^2\right]+2022\le2022\)
Mong bạn thông cảm, mình không chắc là đã giải đúng, có gì bỏ qua cho mình nhé!
Tìm GTLN, GTNN của |x-2019|+|x-2| và |x-2018|+|x-1|
\(|x-2019|+|x-2|\ge|x-2019+2-x|=2017\)
Dau "=" xay ra khi:
\(\left(x-2\right)\left(x-2019\right)\ge0\Leftrightarrow1\le x\le\frac{2019}{2}\)
tt