Phân tích đa thức thành nhân tử:
\(a\left(x^2+1\right)-x\left(a^2+1\right)\)
Phân tích đa thức thành nhân tử
\(2x\left(y-1\right)-z\left(1-y\right)\)
\(a\left(x-y\right)-b\left(x+y\right)+x-y\)
\(a\left(x-y\right)-b\left(y-x\right)+c\left(x-y\right)\)
\(a^m-a^{m+2}\)
a: \(a\left(x-y\right)-b\left(y-x\right)+c\left(x-y\right)\)
\(=a\left(x-y\right)+b\left(x-y\right)+c\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b+c\right)\)
b: \(a^m-a^{m+2}\)
\(=a^m-a^m\cdot a^2\)
\(=a^m\left(1-a^2\right)\)
\(=a^m\left(1-a\right)\left(1+a\right)\)
phân tích đa thức thành nhân tử
a , \(\left(x-3\right)^2-\left(4x+5\right)^2-9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)
Rút gọn thôi chứ phân tích sao được ._.
( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )
= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )
= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18
= -30x2 - 52x - 7
Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))
Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)
\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)
\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)
\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)
\(=\left(4x+7\right)\left(12x+17\right)\)
phân tích đa thức thành nhân tử :
a, \( \left(x-5\right)^2-4\left(x-3\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2\)
(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2
= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2
= (x - 5 + 2x - 1)2 - (2x - 6)2
= (3x - 6)2 - (2x - 6)2
= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)
( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2
= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2
= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2
= ( 3x - 6 )2 - ( 2x - 6 )2
= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )
= x( 5x - 12 )
\(\left(x-5\right)^2-4\left(x-3\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2\)
\(=\left(x-5\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2-4\left(x-3\right)^2\)
\(=\left(x-5+2x-1\right)^2-\left(2x-6\right)^2\)
\(=\left(3x-6\right)^2-\left(2x-6\right)^2\)
\(=\left[\left(3x-6\right)-\left(2x-6\right)\right].\left[\left(3x-6\right)+\left(2x-6\right)\right]\)
\(=\left(3x-6-2x+6\right)\left(3x-6+2x-6\right)\)
\(=\left(5x-12\right)x\)
Phân tích đa thức thành nhân tử
\(x^3-\left(a+5\right)x^2-2\left(a-3\right)\left(a-1\right)x+4a^2-24a+36\)
=\(\left(x+a-3\right)\left(x^2-2ax-2x+4a-12\right)\)
Phân tích đa thức thành nhân tử
\(A=\left(2x^2-x+1\right)\left(2x^2-x-5\right)+8\)
Đặt \(2x^2-x-2=t\)
Ta có:
\(A=\left(t+3\right)\left(t-3\right)+8\)
\(A=t^2-9+8\)
\(A=\left(t-1\right)\left(t+1\right)\)
Thay vào ta được:
\(A=\left(2x^2-x-3\right)\left(2x^2-x-1\right)\)
Phân tích đa thức thành nhân tử:
a) \(x^2\left(1-x^2\right)-4-4x^2\)
b) \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right).\)
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
Phân tích các đa thức sau thành nhân tử bằng phương pháp đặt nhân tử chung:
a) \(4y\left(x-1\right)-\left(1-x\right)\)
b) \(3x\left(z+2\right)+5\left(-x-2\right)\)
a, 4y(x-1)-(1-x)
=(x-1)(4y+1)
b,3x(z+2)+5(-x-2)
=3x(z+2)-5(x+2)
=(z+2)(3x-5)