trừ phân thức :
\(\frac{a^2-5a+4}{16-a^2}-\frac{2a}{2a^2+8a}\)
1)Rút gọn các phân thức sau
a)N = \(\frac{a^4-5a^2+4}{a^4-a^2+4a-4}\)
b)M = \(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
c)P= \(\frac{a^2-2ab+b^2-c^2}{a^2+b^2+c^2-2ab-2bc+2ac}\)
a) \(a^4-5a^2+4=\)\(\left(a^4-4a^2\right)-\left(a^2-4\right)=a^2\left(a^2-4\right)-\left(a^2-4\right)=\left(a^2-1\right)\left(a^2-4\right)\)
\(=\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)
\(a^4-a^2+4a-4=a^2\left(a^2-1\right)+4\left(a-1\right)=a^2\left(a-1\right)\left(a+1\right)+4\left(a-1\right)\)
\(=\left(a-1\right)\left[a^2\left(a+1\right)+4\right]=\left(a-1\right)\left(a^3+a^2+4\right)\)
\(a^3+a^2+4=\left(a^3+2a^2\right)-\left(a^2+2a\right)+\left(2a+4\right)=a^2\left(a+2\right)-a\left(a+2\right)+2\left(a+2\right)\)
\(=\left(a^2-a+2\right)\left(a+2\right)\)
\(N=\frac{\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)}{\left(a-1\right)\left(a+2\right)\left(a^2-a+2\right)}=\frac{\left(a+1\right)\left(a-2\right)}{a^2-a+2}\)
Rút gọn các phân thức sau
a) N = \(\frac{a^4-5a^2+a}{a^4-a^2+4a-4}\)
b) M =\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
c) P = \(\frac{a^2-2ab+b^2-c^2}{a^2+b^2+c^2-2ab-2bc+2ac}\)
c)\(P=\)\(\frac{\left(a-b\right)^2-c^2}{\left(a-b+c\right)^2}=\frac{\left(a-b+c\right)\left(a-b-c\right)}{\left(a-b+c\right)^2}=\frac{a-b-c}{a-b+c}\)
b)\(M\)\(=\frac{\left(a+2\right)\left(a-1\right)^2}{\left(2a-3\right)\left(a-1\right)^2}=\frac{a+2}{2a-3}\)
Rút gọn các phân thức sau
a) N = \(\frac{a^4-5a^2+a}{a^4-a^2+4a-4}\)
b) M =\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
c) P = \(\frac{a^2-2ab+b^2-c^2}{a^2+b^2+c^2-2ab-2bc+2ac}\)
Rút gọn phân thức sau:
\(\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
Chu mi ngaaa....
Hắc hắc :P Cứ làm từ từ sẽ thành công em ạ :D
\(=\frac{a+b+a-b}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{2a\left(a^2+b^2\right)+2a\left(a^2-b^2\right)}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{4a^3\left(a^4+b^4\right)+4a^3\left(a^4-b^4\right)}{a^8-b^8}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{8a^7\left(a^8+b^8\right)+8a^7\left(a^8-b^8\right)}{\left(a^8-b^8\right)\left(a^8+b^8\right)}\)
\(=\frac{16a^{15}}{a^{16}-b^{16}}\)
rút gọn phân thức
\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
Tử = \(a^3-3a+2=a^3-1-3a+3\)
\(=\left(a-1\right)\left(a^2+a+1\right)-3\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2+a-2\right)\)
\(=\left(a-1\right)\left(a-1\right)\left(a+2\right)=\left(a-1\right)^2\left(a+2\right)\)
Mẫu =\(2a^3-7a^2+8a-3=2a\left(a^2-2a+1\right)-3\left(a^2-2a+1\right)\)
\(=\left(a-1\right)^2\left(2a-3\right)\)
=>\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}=\frac{\left(a-1\right)^2\left(a+2\right)}{\left(a-1\right)^2\left(2a-3\right)}=\frac{a+2}{2a-3}\)
Nhớ h cho mik nhé
1)Rút gọn biểu thức
A=\(\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^2}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
B=\(\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}\)
2)Cho\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\).CMR \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)
Bài 1:
\(A=\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{a+b+a-b}{(a-b)(a+b)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=(2a).\frac{a^2+b^2+a^2-b^2}{(a^2-b^2)(a^2+b^2)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=4a^3.\frac{a^4+b^4+a^4-b^4}{(a^4-b^4)(a^4+b^4)}+\frac{8a^7}{a^8+b^8}=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}=8a^7.\frac{a^8+b^8+a^8-b^8}{(a^8-b^8)(a^8+b^8)}\)
\(=\frac{16a^{15}}{a^{16}-b^{16}}\)
--------------
\(B=\frac{1}{a(a+1)}+\frac{1}{(a+1)(a+2)}+\frac{1}{(a+2)(a+3)}=\frac{(a+1)-a}{a(a+1)}+\frac{(a+2)-(a+1)}{(a+1)(a+2)}+\frac{(a+3)-(a+2)}{(a+2)(a+3)}\)
\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}\)
\(=\frac{1}{a}-\frac{1}{a+3}=\frac{3}{a(a+3)}\)
Bài 2:
Bạn tham khảo lời giải tương tự tại link sau:
Câu hỏi của Law Trafargal - Toán lớp 8 | Học trực tuyến
Phân tích đa thức thành nhân tử:
a) 4abc-8ab2c
b)x2(2a-1)+x(1-2a)
c) 9a4(a-2)+a2(a-2)
d) (a-4)(2a-1)-8a+4
a, \(4abc-8ab^2c=4abc\left(1-2b\right)\)
b, \(x^2\left(2a-1\right)+x\left(1-2a\right)=x^2\left(2a-1\right)-x\left(2a-1\right)\)
\(=x\left(x-1\right)\left(2a-1\right)\)
c, \(9a^4\left(a-2\right)+a^2\left(a-2\right)=a^2\left(9a^2+1\right)\left(a-2\right)\)
d, \(\left(a-4\right)\left(2a-1\right)-8a+4=\left(a-4\right)\left(2a-1\right)-4\left(2a-1\right)\)
\(=\left(a-8\right)\left(2a-1\right)\)
a) `4abc-8ab^2c=4abc(1-2b)`
b) `x^2 (2a-1)+x(1-2a) = x^2 (2a-1) -x(2a-1) = (2a-1)(x^2-x)=x(2a-1)(x-1)`
c) `9a^4 (a-2) +a^2 (a-2) = (a-2)(9a^4+a^2)=a^2 (a-2)(9a^2+1)`
d) `(a-4)(2a-1)-8a+4=(a-4)(2a-1)-4(2a-1)=(2a-1)(a-8)`
GPT
a) \(\frac{x}{2a+x}+\frac{2a+x}{2a-x}=\frac{8a^2}{x^2-4a^2}\)(a là hằng)
b) \(\frac{2a-3b}{x-2a}+\frac{3b-2a}{x-3b}=0\)(a và b là hằng)
Rút gọn phân thức
a)) \(\frac{a+b}{a^3+b^3}\)
b)) \(\frac{4a^2+2a+1}{8a^3-1}\)
c)) \(\frac{2ab-b}{8a^3-1}\)