Chứng minh rằng
a) (8^7-2^18) chia hết cho 14
b) (81^7-27^9-9^13) chia hết cho 15
Chứng minh rằng:
1) 8^7-2^18 chia hết cho 14
2) 81^7-27^9-9^13 chia hết cho 405
a) 87-218
=(23)7-218
=221-218
=218.(23-1)
=218. 7
=217.2.7
=217.14 chia het cho 14
81^7-27^9-9^13
=(3^4)^7-(3^3)^9-(3^2)^13
=3^28-3^27-3^26
=(3^26.3^2)-(3^26.3^1)-(3^26.1)
=3^26.(9-3-1)
=3^22.(3^4.5)
=3^22.405 chia het cho 405
=> 81^7-27^9-9^13 chia het cho 405
a.
87 - 218 = (23)7 - 218 = 221 - 218 = 217 x (24 - 2) = 217 x (16 - 2) = 217 x 14
Vậy 87 - 218 chia hết cho 14.
b.
817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 322 x (36 - 35 - 34) = 322 x 405
Vậy 817 - 279 - 913 chia hết cho 405
Chứng minh rằng:
a) 8^17 - 2^18 chia hết cho 14
b) 10^9 + 10^8 + 10^7 chia hết cho 222
c) 81^7 - 27^9 - 9^13 chia hết cho 45
Giải giúp mình nha, mình cám ơn. ^^
Chứng minh rằng:
1/ 87 - 218 chia hết cho 14
2/ 76 +75 - 913 chia hết cho 55
3/ 817 - 279 - 913 chia hết cho 405
1) \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14⋮14\)
vậy đpcm
3) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)=3^{22}.405⋮405\)
vậy đpcm
2: Sửa đề: 7^6+7^5-7^4
=7^4(7^2+7-1)
=7^4*55 chia hết cho 55
3: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5\)
\(=3^{22}\cdot405⋮405\)
1: \(=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}\cdot14⋮14\)
chứng tỏ: 8^7 - 2^18 chia hết cho 14. b) 5^14 . 5^15 . 5^16 chia hết cho 31 c) 81^7 - 9^13 +12^25 + 27^9 - 12^24 chia hết cho 11. Làm giúp mình nha mình cần gấp, ai làm nhanh tick
chứng minh rằng :
817 – 279 – 913 chia hết cho 405.87 – 218 chia hết cho 14.
Ta xét các trường hợp sau:
+ TH1: abab=1⇔⇔a=b Thì a+2b+2a+2b+2=abab=1
+ TH2: abab<1 ⇔⇔a<b⇔⇔a+2<b+2
a+2b+2a+2b+2 Có phần bù tới 1 là: b−ab+2b−ab+2
abab có phần bù tới 1 là b−abb−ab
Mà b−ab+2b−ab+2<b−abb−ab nên a+2b+2a+2b+2>abab
+TH3: abab>1 ⇔⇔a>b ⇔⇔a+2>b+2
a+2b+2a+2b+2 có phần thừa so với 1 là a−bb+2a−bb+2
abab có phần thừa so với 1 là a−bba−bb
Mà a−bb+2a−bb+2<a−bba−bb nên a+2b+2a+2b+2<abab
Sửa lần cuối bởi BQT: 21 Tháng tư 2014
ê bạn cái câu " sửa lần cuối bởi BQT ..." là sao j
1) 817 – 279 – 913 = (34)7 - (33)9 - (32)13
= 328 - 327 - 326
= 326. 32 - 326. 3 - 326
= 326.(32 - 3 - 1)
= 326. 5
= 322. 34. 5
= 322. 405
Mà 322. 405 \(⋮\)405
=> 817 – 279 – 913\(⋮\)405
Vậy 817 – 279 – 913\(⋮\)405
2) 87 – 218 = (23)7 - 218 = 221 - 218 = 217. 24 - 217. 2 = 217.(24 - 2) = 217. 14
Mà 217.14\(⋮\)14
=> 87 – 218\(⋮\)14
Vậy 87 – 218\(⋮\)14
chứng minh rằng :
817 – 279 – 913 chia hết cho 405.87 – 218 chia hết cho 14.405=3^4.5=81.5
27^9=27^8.27=3^24.27=81^6.27
9^13=9^12.9=8^6.9
mà 81^7-81^6.27-81^6.9=81^6.(81-27-9)=81^6.45 chia hết cho 81 và 5
Vậy ....
Chứng minh rằng:
a) \(10^6-5^7\)chia hết cho 59
b) \(81^7-27^9-9^{13}\)chia hết cho 45
c) \(8^7-2^{18}\)chia hết cho 14
d) \(10^9+10^8+10^7\)chia hết cho 222
a) 106 - 57
= 26 . 56 - 57
= 56 . (26 - 5)
= 56 . (64 - 5)
= 56 . 59 chia hết cho 59
=> đpcm
b) 817 - 279 - 913
= (34)7 - (33)9 - (32)13
= 328 - 327 - 326
= 326 .(32 - 3 - 1)
= 326 . (9 - 3 - 1)
= 324 . 32 . 5
= 324 . 9 . 5
= 324 . 45 chia hết cho 45
=> đpcm
c) 87 - 218
= (23)7 - 218
= 221 - 218
= 218 . (23 - 1)
= 218 (8 - 1)
= 217 . 2 . 7
= 217 . 14 chia hết cho 14
=> đpcm
d) 109 + 108 + 107
= 107 . (102 + 10 + 1)
= 57 . 27 . (100 + 10 + 1)
= 57 . 26 . 2 . 111
= 57 . 26 . 222 chia hết cho 222
=> đpcm
Chứng minh rằng :
a/ 8^7 - 2^18 chia hết cho 14
b/ 10^6 - 5^7 chia hết cho 59
c/ 7^6 + 7^5 - 7^4 chia hết cho 55
d/ 16^5 + 2^15 chia hết cho 33
e/ 36^36 - 9^10 chia hết cho 45
f/ 81^7 - 27^9 - 9^13 chia hết cho 405
g/ 7^1000 - 3^1000 chia hết cho 10
h/ ( 2^10 + 2^11 + 2^12 ) : 7 là một số tự nhiên
i/ 313^5.299 - 313^6.36 chia hết cho 7
a/ 8^7-2^18=1835008 chia hết cho 14=131072
b/10^6-5^7=921875 chia hết cho 59=15625
7^6+7^5-7^4=132055 hết cho 55=2401
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
i chịu
a/ 8^7 - 2^18 chia hết cho 14
b/ 10^6 - 5^7 chia hết cho 59
c/ 7^6 + 7^5 - 7^4 chia hết cho 55
d/ 16^5 + 2^15 chia hết cho 33
e/ 36^36 - 9^10 chia hết cho 45
f/ 81^7 - 27^9 - 9^13 chia hết cho 405
g/ 7^1000 - 3^1000 chia hết cho 10
h/ ( 2^10 + 2^11 + 2^12 ) : 7 là một số tự nhiên
i/ 313^5.299 - 313^6.36 chia hết cho 7
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
Chính minh rằng
a,5^5-5^4+5^3 chia hét cho 7
b,16^5+2^15 chia hết cho 33
c,8^7-4^9 chia hết cho 14
d,8^5+4^7-16^3 chia hết cho 256
e,81^7-27^9-9^13 chia hết cho 45