cho hệ pt:\(\left\{{}\begin{matrix}2x^2+xy-y^2=0\\x^2-xy-y^2 +3x+7y+3=0\end{matrix}\right.\) có bao nhiêu cặp nghiệm (x,y) sao cho x,y đều là số nguyên
cho hệ pt:\(\left\{{}\begin{matrix}2x^2+xy-y^2=0\\x^2-xy-y^2+3x+7y+3=0\end{matrix}\right.\).Có bao nhiêu cặp nghiệm x,y sao cho x,y đều là các số nguyên?
các bn giải giúp mk vs ạ
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3-30=0\\x^2y+x\left(1+y+y^2\right)+y-11=0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)
TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)
Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)
TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)
2 câu dưới hình như em hỏi rồi?
\(\left\{{}\begin{matrix}x^3=y^2+7x^2-mx\\y^3=x^2+7y^2-my\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x-y=0\\x^2+y^2+xy-6\left(x-y\right)+m=0\end{matrix}\right.\)
tìm m để pt có đúng 1 nghiệm. Từ x-y=0 Em tìm dc 1 nghiệm và m<16 rồi còn pt dưới thì ch bt làm sao ạ mn giúp em với em cảm ơn nhiêuuuuuu
Trừ vế cho vế:
\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)
- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)
Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m
Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)
Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)
Ta có:
\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)
\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)
Vậy \(m>16\) thì hệ có 1 nghiệm
giải hệ pt :
a, \(\left\{{}\begin{matrix}3y=\dfrac{y^2+2}{x^2}\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2y+xy^2+x-5y=0\\2xy+y^2-5y+1=0\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy+2y+x=2\\2x^2-y^2-2y-2=0\end{matrix}\right.\)
ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html
b.
Với \(xy=0\) không là nghiệm
Với \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)
\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)
\(\Leftrightarrow5-x^2=5x-2x^2\)
\(\Leftrightarrow...\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)
\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu...
a. \(\left\{{}\begin{matrix}x^2-3x+2y=2\\2x^2+y-x=3\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x^2+y^2+xy-3y=4\\2x-3y+xy=3\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}x^2-2y^2-xy-2x+7y-3=0\\x^2+y^2-x+y=0\end{matrix}\right.\)
giải hệ pt:
\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
Với \(xy=0\) là nghiệm
Với \(xy\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}+\dfrac{3x}{y}=0\\\dfrac{y}{x}+x+\dfrac{2}{y}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}=-\dfrac{3x}{y}\\x+\dfrac{2}{y}=-\dfrac{y}{x}\end{matrix}\right.\)
\(\Rightarrow\left(y-\dfrac{2}{x}\right)\left(x+\dfrac{2}{y}\right)=3\)
\(\Leftrightarrow xy-\dfrac{4}{xy}-3=0\)
\(\Rightarrow\left(xy\right)^2-3xy-4=0\Rightarrow\left[{}\begin{matrix}xy=-1\\xy=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{y}\\x=\dfrac{4}{y}\end{matrix}\right.\) thế vào \(y^2+x^2y+2x=0\)
\(\Rightarrow\left[{}\begin{matrix}y^2+\dfrac{1}{y}-\dfrac{2}{y}=0\\y^2+\dfrac{16}{y}+\dfrac{8}{y}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y^3=1\\y^3=-24\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giai hệ PT sau:\(\left\{{}\begin{matrix}2x^2+xy=3y+6\\2y^2+xy=3x+6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy+x^2=1+y\\yx+y^2=1+x\end{matrix}\right.\)
giải hệ phương trình
a, \(\left\{{}\begin{matrix}2y^2+xy-x^2=0\\x^2-xy-y^2+3x+7y+3=0\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}1+x^3y^3=19y^2\\y\left(1+xy\right)=-6x^2\end{matrix}\right.\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
caau a) binh phuong len ra no x=y tuong tu
c)
ĐK $y \geqslant 0$
Hệ đã cho tương đương với
$\left\{\begin{matrix} 2x^2+2xy+2x+6=0\\ (x+1)^2+3(y+1)+2xy=2\sqrt{y(x^2+2)} \end{matrix}\right.$
Trừ từng vế $2$ phương trình ta được
$x^2+2+2\sqrt{y(x^2+2)}-3y=0$
$\Leftrightarrow (\sqrt{x^2+2}-\sqrt{y})(\sqrt{x^2+2}+3\sqrt{y})=0$
$\Leftrightarrow x^2+2=y$