Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thuyền Trưởng
Xem chi tiết
Nghĩa Monster
Xem chi tiết
Kiyotaka Ayanokoji
11 tháng 7 2020 lúc 21:37

Trả lời: 

Phương trình hoành độ giao điểm (P) và (d) ta có:

\(-x^2=2x+m-1\)

\(\Leftrightarrow x^2+2x+m-1=0\)(1)

Ta có: \(\Delta=2^2-4.1.\left(m-1\right)\)

              \(=4-4m+4\)

               \(=8-4m\)

Để phương trình (1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

                                                                \(\Leftrightarrow8-4m>0\)

                                                                \(\Leftrightarrow4m< 8\)

                                                                 \(\Leftrightarrow m< 2\)

\(\Rightarrow\)Phương trình (1) có 2 nghiệm phân biệt 

\(\Rightarrow\)(d) cắt (P) tại 2 diểm phân biệt \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

Áp dụng Vi-ét \(\hept{\begin{cases}x_1+x_2=-2\left(1\right)\\x_1.x_2=m-1\left(2\right)\end{cases}}\)

Ta có \(y_1=-x_1^2\)\(y_2=-x_2^2\)

Theo đề bài:

\(x_1.y_1-x_2.y_2-x_1.x_2=4\)

\(\Leftrightarrow x_1.\left(-x_1^2\right)-x_2.\left(-x_2^2\right)-x_1.x_2=4\)

\(\Leftrightarrow-x_1^3+x_2^3-x_1.x_2=4\)

\(\Leftrightarrow-\left(x_1^3-x_2^3\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(x_1^2+x_1.x_2+x_2^2\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-2x_1.x_2+x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(x_1+x_2\right)^2-x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(-2\right)^2-m+1\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(4-m+1\right)=4+m-1\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(3-m\right)=m+3\)

\(\Leftrightarrow-\left(x_1-x_2\right)=\frac{m+3}{3-m}\)

\(\Leftrightarrow x_1-x_2=\frac{m+3}{m-3}\)(3)

Từ (1) (3) ta có: \(\hept{\begin{cases}x_1+x_2=-2\\x_1-x_2=\frac{m+3}{m-3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x_1=-2+\frac{m+3}{m-3}=\frac{9-m}{m-3}=-\left(m+3\right)\\x_1+x_2=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{-\left(m+3\right)}{2}\\x_2=\frac{m-1}{2}\end{cases}}\)

Thay x1, x2 vào (2) ta có

\(x_1.x_2=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}.\frac{m-1}{2}=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}=2\)

\(\Leftrightarrow-\left(m+3\right)=4\)

\(\Leftrightarrow m+3=-4\)

\(\Leftrightarrow m=-7\)(TM)

Vậy \(m=-7\) thì thỏa mãn bài toán 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 8 2019 lúc 2:25

Ta có: PQ = x 2 - x 1 2 + y 2 - y 1 2

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Linh Nguyen
Xem chi tiết
Lê Thị Thục Hiền
27 tháng 5 2021 lúc 12:18

Xét pt hoành độ gđ của (P) và (d) có:

\(x^2=\left(2m-1\right)x+8\)

\(\Leftrightarrow x^2-\left(2m-1\right)x-8=0\) (*)

Có \(ac=-8< 0\) => pt luôn có hai nghiệm trái dấu

=> (d) luôn cắt (P) tại hai điểm pb có hoành độ trái dấu hay (d) luôn cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung

Hoành độ gđ của A và B là hai nghiệm của pt (*) mà \(x_1< x_2\Rightarrow x_1< 0< x_2\)

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=-8\end{matrix}\right.\)  (|)

Giả sử \(\dfrac{\left|x_1\right|}{\left|x_2\right|}=4\)

\(\Leftrightarrow\dfrac{-x_1}{x_2}=4\)\(\Leftrightarrow x_1+4x_2=0\)  (||)

Từ (|), (||) có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1+4x_2=0\\x_1x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1-2m}{3}\\x_1=\dfrac{4\left(2m-1\right)}{3}\\x_1x_2=-8\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(1-2m\right)}{3}.\dfrac{4\left(2m-1\right)}{3}=-8\) \(\Leftrightarrow\left(1-2m\right)^2=18\)

\(\Leftrightarrow m=\dfrac{1\pm\sqrt{18}}{2}\)

Vậy...

Võ Minh Mẫn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2018 lúc 5:04

Ta có 

Suy ra đồ thị có hai điểm cực tiểu là  A - m 2 - m + 1 ; y C T và  B m 2 - m + 1 ; y C T

Khi đó 

Dấu  xảy ra khi m=1/2.

Chọn B.

Nguyen Tung Anh
Xem chi tiết
Nguyễn Phan Thanh Thủy
Xem chi tiết
Hoàng Thanh Tuấn
3 tháng 6 2017 lúc 21:30
xét phương trình hoành độ giao điểm :  \(x^2=\left(2m-1\right)x-m+2\)\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=\left(2m-1\right)^2+8\ge8\)vậy nên  phương trinh luôn có 2 nghiệm phân biệt tức hai đồ thị luôn cắt nhau tại 2 điểm phân biệt A và BCó viet : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m-2\end{cases}}\)ta có : \(A\left(x_1,y_1\right)=A\left(x_1,x_1^2\right)\)và \(B\left(x_2,y_2\right)=B\left(x_2,x_2^2\right)\)

nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)

\(2m-1=0\Leftrightarrow m=\frac{1}{2}\)\(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN
nguyễn ngọc minh
28 tháng 2 2019 lúc 22:36

2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )

a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?

b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.

Tìm m sao cho: OH2 + OK2 = 6     mọi người hướng dẫ mk ý b vs

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 9 2019 lúc 12:22

Chọn đáp án C