Rút gọn phân thức đại số trên:
S=(a+b+c)^2(a^2+b^2+c^2)+(ab+bc+ca)^2/(a+b+c)^2-(bc+ca+ab)
cho a,b,c là ba số đôi một khác nhau thỏa mãn : ab+bc+ca=0
Rút gọn biểu thức: A= a2/(a2+2bc)+b2/(b2+2ac)+c2/(c2+2ab)
giúp mình với
Rút gọn đẳng thức đại số
a) ( a + b ) - ( b + c ) + ( a + c )
Tính .
a) a + ( 42 + 70 +18 ) - ( 42 + 18 + a )
b) a + 30 + 12 - ( -20) + ( -12) - ( 2 + a )
a, (a+b) -( b+c) +(a+c)
= a +b-b-c +a+c
= 2a
tính
a, bỏ ngoặc ta đc giá trị là 70
b giá trị là 50-2
=48
chúc bn học giỏi
a) (a +b) - (b+c) +(a+c)
= a+b-b-c+a+c
= (a+a)+(b-b)+(c-c)
= 2a+0+0
=2a
b) a+(42+70+18)-(42+18+a)
= a+42+70+18-42-18-a
=(a-a)+(42-42)+(18-18)+70
=0+0+0+70
=70
C) a+30+12-(-20)+(-12)-(2+a)
=a+30+12+20-12-2-a
=(a-a)+(12-12)+(30+20-2)
=0+0+48
=48
Cho các số thực a, b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị của biểu thức \(H=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
1)Rút gọn biểu thức
a)(a+b-c)^2+(a-b+c)^2-2(b-c)^2
b)(a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2
c)(a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-c-b)^2
2)CMR:(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz) với x,y,z khác 0 thì x/a=b/y=c/z
3)Cho (a+b+c)^2=3(a^2+b^2+c^2).CMR a=b=c
4)Cho (a+b+c)^2=3(ab+bc+ca).CMR a=b=c
Cho các số thức dương a,b,c . Tìm giá trị nhỏ nhất của biểu thức
\(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\)
cho a,b,c là số thực dương. Cmr: a/b^2+ bc+c^2 + b/c^2+ ca+a^2 + c/ a^2+ ab+ b^2 >= a/ b^2+ bc + c^2 + b/c^2+ca+a^2 + c/a^2+ab + b^2 >= a+b+c/ab+ bc + ca.
\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)
Cho các số a;b;c khác 0, trong đó không có hai số nào có tổng bằng 0 và thỏa mãn đẳng thức \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{c+a}\).
Tính giá trị của biểu thức M=\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
Tu \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
Hay \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow a=b=c\)
Thay vao M ta co: \(M=\dfrac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\dfrac{2019}{2019}=\dfrac{2018}{2018}=\dfrac{2017}{2017}=\dfrac{2016}{2015+1}=1\)
----------------------------------------------------------
(a+b+c)^2 - (ab+bc+ca)
a. tìm đkxđ của a,b,c để phân thức A có nghĩa
b. Rút gọn A
p/s: mk đang cần rất rất gấp, giúp mk nha. tks
Cho các số thực dương a,b,c. Tìm giá trị nhỏ nhất của biểu thức;
\(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\)
Áp dụng BĐT Cô si cho 3 số dương ta được
\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}\)
=> \(a^3+2\ge3a\)
Áp dụng tương tự có
\(ab+1\ge2\sqrt{ab.1}\)
=>\(ab+1\ge2\sqrt{ab}\)
=>\(\frac{a^3+2}{ab+1}\ge\frac{3a}{2\sqrt{ab}}\)
=> \(\frac{a^3+2}{ab+1}\ge\frac{3}{2}\sqrt{\frac{a}{b}}\)
Chứng minh tương tự thì Q\(\ge\frac{3}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\right)\)
Áp dụng cô si lần nữa thì \(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\ge\sqrt{\sqrt{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}}=1\)
=>Q\(\ge\frac{3}{2}\)
Min Q=3/2.
#)Mất công lắm tui ms tìm đc cách bải này đấy, xin đừng cho ăn gạch đá :v
Ta có (a^3+2)/(ab+1) = 1/2.(2a^3+4)/(ab+1)
Mà 2a^3+4= (a^3+a^3+1) +3
Mặt khác theo BĐT CBS ta có a^3+a^3+1≥ 3a^2
=>2a^3 +4≥ 3(a^2+1)
Tương tự với (b^3 + 2)/(bc + 1) và (c^3 + 2)/(ca + 1)
=>Q ≥ 3/2[(a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1)]
Theo BĐT CBS=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3.căn bặc ba của [(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]
Mà theo bất đẳng thức bunhicốpxki
=>(a^2+1)(b^2+1)≥(ab+1)^2
(b^2+1)(c^2+1)≥(bc+1)^2
(c^2+1)(a^2+1)≥(ac+1)^2
=>[(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]≥1
=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3
=> Q ≥9/2
Dấu bằng xảy ra <=> a=b=c=1
P/s : trả công ( đùa tí :P )
#~Will~be~Pens~#