Cho a,b,c > 0 và a+b+c<1
CMR: 1/(a^2+2bc) +1/b^2+2ca)+1/c^2+2ab>=9
cho ba số a, b, c thỏa mãn abc = 27 và 1/a+1/b+1/c = (a+b+c)/9 Chứng minh (a*2020-9*1010)(b*2020-9*1010)(c*2020-9*1010)=0
Cho 0 ≤a;b;c ≤2 và a-b;b-c;c-a khác 0. Chứng minh rằng: 1/(a-b)^2 + 1/(b-c)^2 +1/(c-a)^2 ≥9/4
cho a>0,b>0,c>0 và a+b+c=1. chứng minh rằng 1/a+1/b+1/c>=9
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Cho a,b,c>0 và a+b+c=1. Chứng minh 1/a + 1/b + 1/c >=9
cho a,b,c đôi 1 khác nhau và khác 0. CMR: a+b+c=0 thì \(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)=9\)
Ta có:
\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
\(=\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)+\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)+\dfrac{b}{c-a}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)
Xét:
\(\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)
\(=1+\dfrac{c}{a-b}\left[\dfrac{b\left(b-c\right)+a\left(c-a\right)}{ab}\right]=1+\dfrac{c}{a-b}\left(\dfrac{b^2-bc+ac-a^2}{ab}\right)\)
\(=1+\dfrac{c}{a-b}\left[\dfrac{\left(b-a\right)\left(b+a\right)-c\left(b-a\right)}{ab}\right]=1+\dfrac{c}{a-b}.\dfrac{\left(b-a\right)\left(a+b-c\right)}{ab}\)
\(=1-\dfrac{c\left(a+b-c\right)}{ab}=1-\dfrac{c.\left(-2c\right)}{ab}=1+\dfrac{2c^2}{ab}\) (do \(a+b+c=0\Rightarrow a+b=-c\))
Tương tự:
\(\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{2a^2}{bc}\)
\(\dfrac{b}{c-a}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{2b^2}{ca}\)
\(\Rightarrow P=3+2\left(\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\right)=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}\)
Mặt khác ta có đằng thức quen thuộc:
Khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
\(\Rightarrow P=3+\dfrac{2.3abc}{abc}=9\)
Cho a,b,c>0 và a^2 + b^2 + c^2 = 3. CMR a/b + b/c + c/a >= 9/a+b+c
cho a,b,c khác 0 thỏa mãn abc=27 và a+b+c=\(\frac{9}{a}\)+\(\frac{9}{b}\)+\(\frac{9}{c}\)
cmr (a-3)(b-3)(c-3)=0
bạn lê mạnh quân ko trả lời thì bạn đừng chửi nhé
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Ko trả lời được thì cũng đừng chửi nha
Cho 3 số a, b, c thỏa mãn 0 ≤ a, b, c ≤ 2 và a+b+c=3. Chứng minh a^3 + b^3 + c^3 ≤ 9.
a) cho a>0,b>0,c>0
C/m (a+b+c)(1/a+1/b+1/c) >=1/9
b) cho a,b,c thỏa mãn: a+b+c=0 và a2+b2+c2=2011.Tính A=a4+b4+c4
mọi người giúp vs nha
cho a>b>c>0 và a+3b=8, a+2c=9, a+b+c lớn nhất
Tìm a, b, c