Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ayakashi
Xem chi tiết
Ayakashi
Xem chi tiết
Lê Thành An
Xem chi tiết
pro
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 9:36

\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(A_{min}=3\) khi \(a=b=c=1\)

Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)

\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)

Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)

\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)

\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị

qqqqqqq
Xem chi tiết
CTVHoidap
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2022 lúc 20:44

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

Nguyễn Việt Lâm
25 tháng 3 2022 lúc 20:56

2.

Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)

\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)

Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)

\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)

\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)

Do \(a;b;c\in\left[0;1\right]\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow ab+c+1\ge a+b+c=2\)

\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)

\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)

\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)

Hoàn toàn tương tự, ta có: 

\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)

Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)

\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)

\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng

ducquang050607
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 22:15

Tham khảo:

Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:  \(Q=\s... - Hoc24

dia fic
Xem chi tiết
Trần Minh Hoàng
14 tháng 1 2021 lúc 10:22

Ta có: \(\sqrt{a^2+b^2+c^2}\ge\sqrt{\dfrac{\left(a+b+c\right)^2}{3}}=\sqrt{3};\sqrt{a^2+b^2+c^2}\le\sqrt{\left(a+b+c\right)^2}=3\).

Đặt \(\sqrt{a^2+b^2+c^2}=t\) \((\sqrt{3}\leq t\leq 3)\).

Ta có: \(P=t+\dfrac{9-t^2}{4}+\dfrac{1}{t^2}=\dfrac{4t^3+9t^2-t^4+4}{4t^2}\).

\(\Rightarrow P-\dfrac{28}{9}=\dfrac{\left(3-t\right)\left(9t^3-9t^2+4t+12\right)}{36}\).

Do \(\sqrt{3}\le t\le3\) nên \(3-t\geq 0\)\(9t^3-9t^2+4t+12>4t+12>0\).

Nên \(P\ge\dfrac{28}{9}\).

Đẳng thức xảy ra khi t = 3, tức (a, b, c) = (0; 0; 3) và các hoán vị.

Vậy...

 

ngoc bich 2
Xem chi tiết
Nyatmax
22 tháng 10 2019 lúc 17:26

Ta co:

\(Q=a^3+b^3+c^3=\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)-6\ge3\left(a+b+c\right)-6=3\)

Dau '=' xay ra khi \(a=b=c=1\)

Vay \(Q_{min}=3\)khi \(a=b=c=1\)

Khách vãng lai đã xóa