B=\(\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
a) Tìm điều kiện xác định
b) Rút gọn biểu thức B
\(\left(\frac{\sqrt{x}-2}{2\sqrt{x}-2}+\frac{3}{2\sqrt{x}+2}-\frac{\sqrt{x}+3}{2\sqrt{x}+2}\right):\left(1-\frac{\sqrt{x}-3}{x-1}\right)\)
a . Tìm điều kiện xác định
b. Rút gọn biểu thức
cho biểu thức B = \(\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}-2}{\sqrt{x}+1}\right).\frac{x-1}{\sqrt{x}+2}\)
a tính điều kiện để biểu thức B được xác định
b, Rút gọn B
Cho biểu thức E = \(\left(\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{2\sqrt{x}}{\sqrt{x}-1}\right)\div\frac{-x+14\sqrt{x}+3}{x\sqrt{x}-4x+3\sqrt{x}}\)
a. Tìm điều kiện để biểu thức được xác định
b. Rút gọn biểu thức
Cho biểu thức : B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x-1}}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm điều kiện xác định và rút gọn biểu thức B
b) So sánh B với 2
c) Tìm GTLN của A = B - \(9\sqrt{x}\)
xin lỗi bạn nhé mik lớp 7
B=\(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-1}\right)\)
Rút gọn biểu thức B
Tìm đièu kiện xác định để B\(\le\)0
ĐKXĐ: \(x>0;x\ne1;x\ne9\)
\(B=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-1}\right)\)
\(=\frac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{x-1-x+3}\)
\(=\frac{1}{\sqrt{x}}.\frac{\sqrt{x}-3}{2}\)
\(=\frac{\sqrt{x}-3}{2\sqrt{x}}\)
Để B < 0 thì
\(\frac{\sqrt{x}-3}{2\sqrt{x}}< 0\)
\(\Rightarrow\)\(\sqrt{x}-3\)và \(2\sqrt{x}\)trái dấu mà
\(2\sqrt{x}\ge0\)\(\Rightarrow\sqrt{x}-3< 0\)
\(\Rightarrow\sqrt{x}< 3\)
\(\Rightarrow x< 9\)
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a)Tìm điều kiện xác định, rút gọn biểu thức
b)Tìm giá trị nhỏ nhất P
c)Tìm x để biểu thức Q=\(\frac{2\sqrt{x}}{P}\)nhận giá trị nguyên
B=\(\left(\frac{\sqrt{x+1}}{\sqrt{x-1}}+\frac{1-\sqrt{x}}{\sqrt{x+1}}\right):\left(\frac{\sqrt{x+1}}{\sqrt{x-1}}+\frac{\sqrt{x}}{\sqrt{x+1}}+\frac{\sqrt{x}}{1-x}\right)\)
a. Tìm điều kiện xác định,rút gọn B
b. tính B với x= 1- \(\frac{\sqrt{3}}{2}\)
c. so sánh B với 2
Cho biểu thức : \(A=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\cdot\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
a) Tìm điều kiện xác định của biểu thức A
b) Rút gọn biểu thức A
c) Tìm giá trị lớn nhất của A
Cảm ơn! :>>
\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(b,\)\(A=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right).\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
\(c,A_{max}\Leftrightarrow1-x\)lớn nhất \(\Rightarrow x\)nhỏ nhất
Mà \(x\ge0\)\(\Rightarrow x\)nhỏ nhất \(\Leftrightarrow x=0\)
\(\Rightarrow A_{max}=1\Leftrightarrow x=0\)
Cho biểu thức
\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{11}{x+\sqrt{x}+1}-\frac{34}{1-x\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\)
a)Tìm điều kiện của x để P xác định, rút gọn P?
b) tính giá trị của P khi \(x=3-2\sqrt{2}\)
c)tìm giá trị nhỏ nhất của biểu thức P? Giá trị đó đạt được khi x bằng bao nhiêu?
a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)
b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:
\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)
\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)
Cho A= \(\left(\frac{x+1}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a, Tìm điều kiện xác định
b, Rút gọn