Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bao Gia
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 9 2018 lúc 6:21

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Mặt phẳng (M, d) cắt (α) theo giao tuyến M 1 M 2 . Điểm A cũng thuộc giao tuyến đó. Vậy đường thẳng M 1 M 2  luôn luôn đi qua điểm A cố định.

b) Mặt phẳng (M, d) cắt (β) theo giao tuyến BM. Điểm K thuộc giao tuyến đó nên ba điểm K, B, M thẳng hàng.

 

c) Giả sử b cắt m tại I thì mặt phẳng ( S 1 ,   b ) luôn luôn cắt (α) theo giao tuyến I M 1 . Do đó điểm M 1  di động trên giao tuyến của I M 1  cố định. Còn khi M di động trên b thì mặt phẳng ( S 2 ,   b ) cắt (α) theo giao tuyến I M 2 . Do đó điểm M 2  chạy trên giao tuyến I M 2 cố định.

Đỗ Gia Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2018 lúc 5:49

a và b cắt nhau tại I

I ∈ a ∈ α (vì a là giao tuyến của α và λ)

I ∈ b ∈ β ( vì b là giao tuyến của β và λ)

Nên I là điểm chung của α và β

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2019 lúc 12:03

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) I, A’, B’ là ba điểm chung của hai mặt phẳng (OAB) và (β) nên chúng thẳng hàng.

b) I, J, K là ba điểm chung của hai mặt phẳng (ABC) và (A’B’C’) nên chúng thẳng hàng.

Hoàng Trung Khải
Xem chi tiết
Mạnh Lê
7 tháng 5 2018 lúc 1:56

* Dựng \(\Delta OAB\)vuông tại A có: \(\widehat{AOB}=\alpha\)

Dựng \(\Delta OBC\)vuông tại B có: \(\widehat{BOC}=\beta\)và OC = 1 (đơn vị độ dài)

Từ C hạ \(CD\perp OA\)tại D \((D\in OA)\)

Từ B hạ \(BH\perp CD\)tại H (\(H\in CD\))

Ta có: \(\widehat{AOB}=\widehat{BCD}=\widehat{BCH}=\alpha\)(góc có cạnh tương ứng vuông góc)

Xét \(\Delta BOC\)có: \(\sin\beta=\frac{BC}{OC}=\frac{BC}{1}\Rightarrow BC=\sin\beta\)

\(\cos\beta=\frac{OB}{OC}=\frac{OB}{1}\Rightarrow OB=\cos\beta\)

Xét \(\Delta OAB\)có: \(\sin\alpha=\frac{AB}{OB}=\frac{AB}{\cos\beta}\Rightarrow AB=\sin\alpha.\cos\beta\)

Xét \(\Delta BCH\)có: \(\cos\alpha=\frac{CH}{BC}=\frac{CH}{\sin\beta}\Rightarrow CH=\cos\alpha.\sin\beta\)

Xét \(\Delta ODC\)có: \(\sin\left(\alpha+\beta\right)=\frac{DC}{OC}=\frac{DC}{1}=DC\)

Mà DC = DH + CH = AB + CH 

=> \(\sin\left(\alpha+\beta\right)=\sin\alpha.\cos\beta+\cos\alpha.\sin\beta\)(1)

Cách dựng tương đối giống ở trên khác ở chỗ : OB =1 (đơn vị độ dài), \(\widehat{OCB}=90^o\)\(\widehat{BOC}=\beta,\widehat{AOB}=\alpha-\beta\),\(\widehat{AOC}=\alpha\)

Ta có: \(\widehat{BCH}=\widehat{BCD}=\widehat{AOC}=\alpha\)(góc có cạnh tương ứng vuông góc)

Xét \(\Delta BOC\)có: \(\sin\beta=\frac{BC}{OB}=\frac{BC}{1}=BC\Rightarrow BC=\sin\beta\)

\(\cos\beta=\frac{OC}{OB}=\frac{OC}{1}=OC\Rightarrow OC=\cos\beta\)

Xét \(\Delta OCD\)có:

\(\sin\alpha=\frac{CD}{OC}=\frac{CD}{\cos\beta}\Rightarrow CD=\sin\alpha.\cos\beta\)

Xét \(\Delta BCH\)có:

\(\cos\alpha=\frac{CH}{BC}=\frac{CH}{\sin\beta}\Rightarrow CH=\cos\alpha.\sin\beta\)

Xét \(\Delta OAB\)có:

\(\sin\left(\alpha-\beta\right)=\frac{AB}{OB}=\frac{AB}{1}=AB\)

Mà AB=DH= CD -CH = \(\sin\alpha.\cos\beta-\cos\alpha.\sin\beta\)

=> \(\sin\left(\alpha-\beta\right)=\sin\alpha.\cos\beta-\cos\alpha.\sin\beta\)(2)

Cộng từng vế của (1) và (2) ta được:

\(\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)=2.\sin\alpha.\cos\beta\)=> \(\sin\alpha.\cos\beta=\frac{\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)}{2}\)(đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 5 2018 lúc 11:30

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta lại có AB′  ⊥  SC nên suy ra AB′ ⊥ (SBC). Do đó AB′  ⊥  B′C

Chứng minh tương tự ta có AD′  ⊥  D′C.

Vậy ∠ ABC =  ∠ AB′C =  ∠ AC′C =  ∠ AD′C =  ∠ ADC = 90 °

Từ đó suy ra 7 điểm A, B, C, D, B’, C’, D’ cùng nằm trên mặt cầu đường kính là AC.

Huỳnh Ngọc Phương Thảo
Xem chi tiết
Trần Nhã Trúc
Xem chi tiết
Trần ngô hạ uyên
23 tháng 8 2019 lúc 19:11

làm ra chưa chỉ mình với

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2017 lúc 11:44