Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hai mặt phẳng (α) và (β) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt (α) ở A và cắt (β) ở B ta lấy hai diểm cố định S 1 ,   S 2  không thuộc (α), (β). Gọi M là một điểm di động trên (β). Giả sử các đường thẳng M S 1 ,   M S 2  cắt (α) lần lượt tại M 1  và M 2 .

a) Chứng minh rằng M 1 M 2  luôn luôn đi qua một điểm cố định.

b) Giả sử đường thẳng  M 1 M 2  cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng.

c) Gọi b là một đường thẳng thuộc mặt phẳng (β) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm  M 1  và  M 2  di động trên hai đường thẳng cố định thuộc mặt phẳng (α).

Cao Minh Tâm
27 tháng 9 2018 lúc 6:21

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Mặt phẳng (M, d) cắt (α) theo giao tuyến M 1 M 2 . Điểm A cũng thuộc giao tuyến đó. Vậy đường thẳng M 1 M 2  luôn luôn đi qua điểm A cố định.

b) Mặt phẳng (M, d) cắt (β) theo giao tuyến BM. Điểm K thuộc giao tuyến đó nên ba điểm K, B, M thẳng hàng.

 

c) Giả sử b cắt m tại I thì mặt phẳng ( S 1 ,   b ) luôn luôn cắt (α) theo giao tuyến I M 1 . Do đó điểm M 1  di động trên giao tuyến của I M 1  cố định. Còn khi M di động trên b thì mặt phẳng ( S 2 ,   b ) cắt (α) theo giao tuyến I M 2 . Do đó điểm M 2  chạy trên giao tuyến I M 2 cố định.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết