A = X^2 + ly-2l +3
B = l x + 3l + l x - 7l
1,Tìm x,biết
a,lx+2l+lx+3l+l2-6xl=72-x
b,lx-2l-lx+3l=lx+7l
Giúp mik vs nha
1) Tính
a) (-3)x (15-14+17-18) x l-1250l x (-87)
b) (-3+8)x (-5-3)x (-5+l+2l-l-2 l
c) (-7+5) x (4-l-7l+l+2l x (-3+l-5l)
Tìm x biết:
l x+2l + l x+3l = 4.(x-1)-l x-1l
`|x+2|+|x+3|+|x-1|=4(x-1)`
`<=>|x+2|+|x+3|+|x-1|=4(x-1)`
Ta có nhận xét: Dễ thấy `|x+2|+|x+3|+|x-1|>=0AAx` suy ra `4(x-1)>=0` hay `x>=1`
Khi đó, pt trở thành:
`(x+2)+(x+3)+(x-1)=4(x-1)`
`<=>3x+4=4x-4`
`<=>4x-3x=4+4`
`<=>x=8(TM)`
Vậy `x=8`
Giải giúp mình với tìm x, y lx+3l = lx-1l = 16/( ly-2l + ly+2l )
1. với giá trị nào của x thì A=lx-3l + lx-5l + lx-7l đạt giá trị nhỏ nhất ?
2. với giá trị nào của x thì B= lx-1l + lx-2l + lx-3l + lx-5l đạt giá trị nhỏ nhất ?
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
tìm x,y biết
a) l2+3xl = l4x-3l
b) lx-y-2l + ly+3l=0
a) \(\left|2+3x\right|=\left|4x-3\right|\)
\(\Rightarrow2+3x=4x-3\)
\(\Rightarrow2+3=4x-3x\)
\(\Rightarrow5=x\)
Vậy x=5
b) \(\left|x-y-2\right|+\left|y+3\right|=0\)
\(\Leftrightarrow\left|x-y-2\right|=0\) và \(\left|y+3\right|=0\)
\(\Leftrightarrow x-y-2=0\) và \(y+3=0\)
\(\Leftrightarrow x-y=0+2\) và \(y=0+3\)
\(\Leftrightarrow x-y=2\) và \(y=3\)
Vì y=3 nên ta có:
\(x-3=2\)
\(x=2+3\)
\(x=5\)
Vậy \(x=5;y=3\)
b) |x-y-2| + |y+3| = 0
Vì |x-y-2| \(\ge0\)với mọi x;y
|y+3| \(\ge0\)với mọi x;y
\(\Rightarrow\)|x-y-2| + |y+3| = 0 \(\Leftrightarrow\)x - y - 2 = 0 và y + 3 =0
\(\Leftrightarrow\)y = 3 và x = 5
Vậy x = 5; y= 3
Phần a rất đơn giản nên mình sẽ không trình bày. Mình chỉ hướng dẫn thôi: Bạn hãy đi xét hai trường hợp 2 + 3x dương và 2 +3x âm.
4x - 3 dương và 4x - 3 âm. Lần lượt thay kết quả vào biểu thức là bạn sẽ tìm ra được giá trị của x và y.
a/ Có 2 trường hợp như sau:
\(\hept{\begin{cases}2+3x=4x-3\\2+3x=-4x+3\end{cases}}\) => \(\hept{\begin{cases}x_1=5\\x_2=\frac{1}{7}\end{cases}}\)
b/ Ta có: Ix-y-2I\(\ge\)0 và Iy+3I\(\ge\)0
Tổng của 2 số dương =0 khi cả 2 số đều bằng 0, ta có:
\(\hept{\begin{cases}x-y-2=0\\y+3=0\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=-3\end{cases}}\)
l 1-x l - lx-2l - lx-3l=1/2
Tìm x thuộc Z thỏa mãn :
a. l-5l + l2l < x < l-10l + l-3l
b. l-7l - l-6l < x < l-13l - l8l
a.Ta có: |-5|+|2|\(\le\)x<|-10|+|-3|
=>5+2\(\le\)x<10+3
=>7\(\le\)x<13
=>x\(\in\){7;8;9;10;11;12}
b. Ta có: |-7| - |-6|<x\(\le\)|-13|-|8|
=>7-6<x\(\le\)13-8
=>1<x\(\le\)5
=>x\(\in\){2;3;4;5}
A={x ϵ R l l2x-3l ≤5}
B={x ϵ R l3-xl >1}
C={x ϵ R 1< lx-2l ≤7}
D={x ϵ R 1≤ l2x-3l ≤5
E={x ϵ R l\(\dfrac{x-1}{x+2}+1\) l ≤3
xác định \(A\cap B,A\cap B\cap C,A\cup B\cup C\cup D,A\cap D,E\cap D,E\cup D\)