Tìm tất cả các số tự nhiên n để biểu thức: \(Q=\sqrt{n+2}+\sqrt{n+\sqrt{n+2}}\)là một số nguyên
tìm tất cả các số tự nhiên n sao cho biểu thức :
\(\sqrt{\frac{49}{2}+\sqrt{\frac{2401}{4}-n}}+\sqrt{\frac{49}{2}-\sqrt{\frac{2401}{4}-n}}\)
có giá trị nguyên
New (cách mới) : Đặt \(x=\frac{49-\sqrt{2401-4n}}{2}\) là số chính phương.
Mà \(\frac{49-\sqrt{2401-4n}}{2}\le\frac{49}{2}\), các số chính phương nhỏ hơn 49/2 là 0; 1; 4; 9; 16
+ Nếu x= 16 -> \(49-\sqrt{2401-4n}=\)32 => \(\sqrt{2401-4n}=\)17 (loại)
+ Nếu x= 9 -> \(49-\sqrt{2401-4n}=\)18 => \(\sqrt{2401-4n}=\)31 (loại)
+ Nếu x= 4 -> \(49-\sqrt{2401-4n}=\)8 => \(\sqrt{2401-4n}=\)41 (loại)
+ Nếu x= 1 -> \(49-\sqrt{2401-4n}=\)2 => \(\sqrt{2401-4n}=\)47 (loại)
+ Nếu x= 0 -> \(49-\sqrt{2401-4n}=\)0 => \(\sqrt{2401-4n}=\)49 => 2041 - 4n = 492 = 2041
=> 4n = 0 => n =0
Thay n=0 vào biểu thức được kết quả là 7 nên n=0 để biểu thức có giá trị nguyên.
\(\sqrt{\frac{49+\sqrt{2401-4n}}{2}}+\sqrt{\frac{49-\sqrt{2401-4n}}{2}}\)
ĐK: 2401 - 4n ≥ 0 => n ≤ 600
Đặt x = \(\sqrt{2401-4n}\)
Để biểu thức có giá trị nguyên thì 2401-4n là số chính phương; (49+x)/2 và (49-x)/2 là số chính phương
=>(492 - x2)/4 là số chính phương
=> (2401 - x2)/4 = (2401-2401+4n)/4 = n là số chính phương
Ta có: n=k2 (k≥0)
=> 492 - (2k)2 = (49-2k)(49+2k) là số chính phương.
Thay k từ 0 đến 24 (nếu k>24 thì 49-2k<0) chỉ có k=0 thỏa mãn để (49-2k)(49+2k) là số chính phương. => n =0
Vậy n =0 để biểu thức có giá trị nguyên (=7)
----
Tới bước cuối ko nghĩ ra đc nữa nên mò :3
Tìm tất cả các số tự nhiên n để \(\sqrt{n^2+14n-256}\)là số tự nhiên
biểu thức đã cho là số tự nhiên khi n^2+14n-256=a^2(a là số tự nhiên)
n^2+14n+49=a^2+49+256=a^2+305
(n+7)^2= a^2+305
vì n là số tự nhiên nên n+7 là số tự nhiên nên (n+7)^2 là số chính phương có dang b^2(b là số tự nhiên)
suy ra a^2+305=b^2
b^2-a^2=305
(b-a)(b+a)=305
vì a và b là số tự nhiên nên a+b là số tự nhiên và b+a>b-a
suy ra b+a là ước tự nhiên của 305={1;5;61;305}
nếu b+a=1 thì b-a=305>b+a(loại)
nếu b+a=5 thì b-a=61>b+a(loại)
nếu b+a=61 thì b-a=5 suy ra a=28 thay vào tìm được n=26
nếu b+a=305 thì b-a=1 suy ra a=152 thay vào tìm đươc n=146
vây n=26 hoặc n=146 tmđb
Tìm tất cả các số tự nhiên n sao cho \(\sqrt{2^8+2^{11}+2^n}\) là một số hữu tỉ
Ta có: A= \(2^8+2^{11}+2^n=\)\(=2304+2^n=9.256+2^n=2^8\left(9+2^{n-8}\right)\)
Vây để biểu thức là số hữu tỷ thì A là số chính phương, vậy \(9+2^{n-8}=m^2\)
=> \(2^{n-8}=\left(m-3\right)\left(m+3\right)\)
Đặt: \(\hept{\begin{cases}m+3=2^k\\m-3=2^l\end{cases}}\), Nếu k\(\ge\)4, ta có:\(6=\left(m+3\right)-\left(m-3\right)=2^k-2^l\ge2^k-2^{k-1}\ge8\)(vô lý)
Vậy k=1,2,3
thay k=3 thì m=5,n=12
Vậy n=12
Cách 2: Đặt \(\left(2^8+2^{11}+2^n\right)=\left(2^a+2^b\right)^2=2^{2a}+2^{a+b+1}+2^{2b}\)
Vai trò của a,b như nhâu nên
Từ đây dễ dàng chọn: 2a=8 => a=4 => b=6
Bài 1: Tìm các số thực x để biểu thức \(\sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}\) là số nguyên.
Bài 2: Chứng minh rằng với mọi số tự nhiên n dương, phương trình sau không có nghiệm hữu tỷ:
\(x^2+2\left(n-1\right)\left(n+1\right)x+1-6n^3-13n^2-6n=0\)
Bài 3: Tìm các số hữu tỷ a và b thỏa mãn \(\sqrt{a\sqrt{7}}-\sqrt{b\sqrt{7}}=\sqrt{11\sqrt{7}-28}\)
a) Tìm các cặp số a;b thõa mãn hệ thức
\(\sqrt{a+b-2011}=\sqrt{a}+\sqrt{b}-\sqrt{2011}\)
b) Tìm tất cả các số tự nhiên n sao cho n2 - 14n + 38 là số chính phương
CÂU NÀO CŨNG CÓ TK NHA !!!!
We put \(n^2-14n+38=k^2\)
\(\Rightarrow n^2-14n+49-11=k^2\)
\(\Rightarrow\left(n-7\right)^2-11=k^2\)
\(\Rightarrow\left(n-7\right)^2-k^2=11\)
\(\Rightarrow\left(n-7-k\right)\left(n-7+k\right)=11=1.11=11.1=\left(-1\right).\left(-11\right)\)
\(=\left(-11\right).\left(-1\right)\)
Prints:
\(n-7-k\) | \(1\) | \(11\) | \(-11\) | \(-1\) |
\(n-7+k\) | \(11\) | \(1\) | \(-1\) | \(-11\) |
\(n-k\) | \(8\) | \(18\) | \(-4\) | \(6\) |
\(n+k\) | \(18\) | \(8\) | \(6\) | \(-4\) |
Case by case, we have \(n\in\left\{13;1\right\}\)
Câu 1.
Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\), \(N=\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với \(x\ge0,x\ne4,x\ne9.\)
1) Tính giá trị của biểu thức N khi x = 16,
2) Rút gọn biểu thức M.
3) Tìm tất cả các số tự nhiên x để M < N.
Câu 2.
Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 4 km/h nên đến B sớm muộn hơn nhau 45 phút. Tính vận tốc của mỗi người, biết quãng đường AB dài 36 km.
Câu 3.
1) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x+1}{x}+\dfrac{2y+1}{y}=5\\\dfrac{3x+2}{x}+\dfrac{3y+1}{y}=9\end{matrix}\right.\)
2) Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: y = x + m và parabol (P): y = x2.
a) Tìm các tọa độ giao điểm của d và (P) khi m = 6.
b) Tìm m sao cho d cắt (P) tại hai điểm phân biệt có hoành độ dương.
Câu 4.
Cho tam giác ABC vuông tại A và AB < AC. Gọi H là hình chiếu vuông góc của A trên BC và M là điểm đối xứng của H qua AB.
1) Chứng minh tứ giác AMBH nội tiếp.
2) P là giao điểm thứ hai của đường thẳng CM với đường tròn ngoại tiếp tứ giác AMBH. Chứng minh CP.CM = CA2.
3) Gọi E, N lần lượt là giao điểm thứ hai của AB, HP với đường tròn ngoại tiếp tam giác APC. Chứng minh rằng EN song song với BC.
Câu 5.
Giải phương trình: \(\sqrt{x-3}+x^2-6x+7=0\)
Câu 2:
2) Ta có: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
Câu 2 :
Gọi : vận tốc của người đi chậm là : x (km/h) ( x > 0 )
Vận tốc của người đi nhanh : x + 4 (km/h)
Vi : người đi chậm đến muộn hơn : 45 phút \(=\dfrac{3}{4}\left(h\right)\)
Khi đó :
\(\dfrac{36}{x}-\dfrac{36}{x+4}=\dfrac{3}{4}\)
\(\Leftrightarrow\left[36\cdot\left(x+4\right)-36x\right]\cdot4=3x\cdot\left(x+4\right)\)
\(\Leftrightarrow3x^2+12x-144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(n\right)\\x=16\left(l\right)\end{matrix}\right.\)
Câu 1:
1) Thay x=16 vào N, ta được:
\(N=\dfrac{2\cdot\sqrt{16}+1}{3-\sqrt{16}}=\dfrac{2\cdot4+1}{3-4}=\dfrac{9}{-1}=-9\)
Vậy: Khi x=16 thì N=-9
Tìm số tự nhiên n sao cho biểu thức \(\sqrt{5+\sqrt{25-n}}+\sqrt{5-\sqrt{25-n}}\)có giá trị nguyên
Bạn đang tìm kiếm số tự nhiên n để biểu thức: sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên. Để giải quyết vấn đề này, chúng ta sẽ sử dụng một số tính chất của các số nguyên và căn bậc hai.
Đầu tiên, ta nhận thấy rằng nếu biểu thức trên có giá trị nguyên, thì cả hai căn bậc hai phải là số nguyên. Điều này có nghĩa là 5 + sqrt(25 - n) và 5 - sqrt(25 - n) đều phải là bình phương của một số nguyên. Ta có thể viết lại hai biểu thức này như sau:
5 + sqrt(25 - n) = a^2 5 - sqrt(25 - n) = b^2
Trong đó a và b là các số nguyên. Từ đó, ta có:
a^2 + b^2 = 10 a^2 - b^2 = sqrt(25 - n)
Ta có thể giải hệ phương trình này để tìm a, b, và n. Đầu tiên, ta có:
(a^2 + b^2) + (a^2 - b^2) = 2a^2 = 10 + sqrt(25 - n)
Từ đó, ta suy ra:
a^2 = 5 + (1/2)sqrt(25 - n)
Tương tự, ta có:
b^2 = 5 - (1/2)sqrt(25 - n)
Do a và b là các số nguyên, ta có thể suy ra rằng sqrt(25 - n) phải là một số chẵn. Từ đó, ta có:
25 - n = 4k^2
Với k là một số nguyên. Từ đó, ta suy ra:
n = 25 - 4k^2
Vậy để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một số tự nhiên sao cho sqrt(25 - n) là một số chẵn. Các giá trị của n thỏa mãn điều kiện này là n = 3 và n = 7 1.
Vì vậy, để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một trong hai số tự nhiên 3 hoặc 7.
Bạn đang tìm kiếm số tự nhiên n để biểu thức: sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên. Để giải quyết vấn đề này, chúng ta sẽ sử dụng một số tính chất của các số nguyên và căn bậc hai.
Đầu tiên, ta nhận thấy rằng nếu biểu thức trên có giá trị nguyên, thì cả hai căn bậc hai phải là số nguyên. Điều này có nghĩa là 5 + sqrt(25 - n) và 5 - sqrt(25 - n) đều phải là bình phương của một số nguyên. Ta có thể viết lại hai biểu thức này như sau:
5 + sqrt(25 - n) = a^2 5 - sqrt(25 - n) = b^2
Trong đó a và b là các số nguyên. Từ đó, ta có:
a^2 + b^2 = 10 a^2 - b^2 = sqrt(25 - n)
Ta có thể giải hệ phương trình này để tìm a, b, và n. Đầu tiên, ta có:
(a^2 + b^2) + (a^2 - b^2) = 2a^2 = 10 + sqrt(25 - n)
Từ đó, ta suy ra:
a^2 = 5 + (1/2)sqrt(25 - n)
Tương tự, ta có:
b^2 = 5 - (1/2)sqrt(25 - n)
Do a và b là các số nguyên, ta có thể suy ra rằng sqrt(25 - n) phải là một số chẵn. Từ đó, ta có:
25 - n = 4k^2
Với k là một số nguyên. Từ đó, ta suy ra:
n = 25 - 4k^2
Vậy để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một số tự nhiên sao cho sqrt(25 - n) là một số chẵn. Các giá trị của n thỏa mãn điều kiện này là n = 3 và n = 7 1.
Vì vậy, để biểu thức sqrt(5 + sqrt(25 - n)) + sqrt(5 - sqrt(25 - n)) có giá trị nguyên, thì n phải là một trong hai số tự nhiên 3 hoặc 7.
cho dãy số \(U_n=\frac{\left(2+\sqrt{3}\right)^n-\left(2-\sqrt{3}\right)^n}{2\sqrt{2}}\)
tìm tất cả các số nguyên n để Un chia hết cho 3
Tìm tất cả các cặp số tự nhiên n sao cho : \(n^2+2n+\sqrt{n^2+2n+18}+9\) là số chính phương.