Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bá Dương
Xem chi tiết
Đỗ Thái Tuấn
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Liễu Lê thị
Xem chi tiết
ILoveMath
13 tháng 11 2021 lúc 20:58

TH1: \(x+y+z+t\ne0\) 

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Rightarrow3x=y+z+t\Rightarrow4x=x+y+z+t\\ \dfrac{y}{z+t+x}=\dfrac{1}{3}\Rightarrow3y=x+z+t\Rightarrow4y=x+y+z+t\\ \dfrac{z}{t+x+y}=\dfrac{1}{3}\Rightarrow3z=x+y+t\Rightarrow4z=x+y+z+t\\ \dfrac{t}{x+y+z}=\dfrac{1}{3}\Rightarrow3t=x+y+z\Rightarrow4t=x+y+z+t\)
\(\Rightarrow4x=4y=4z=4t\\ \Rightarrow x=y=z=t\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =1+1+1+1\\ =4\)

TH1: \(x+y+z+t=0\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =\dfrac{-\left(z+t\right)}{z+t}+\dfrac{-\left(t+x\right)}{t+x}+\dfrac{-\left(x+y\right)}{x+y}+\dfrac{-\left(y+z\right)}{y+z}\\ =-1-1-1-1\\ =-4\)

Liễu Lê thị
Xem chi tiết
ILoveMath
13 tháng 11 2021 lúc 20:58

Tham khảo: https://hoc24.vn/cau-hoi/cho-bieu-thuc-pdfracxyztdfracyztxdfracztxydfractxyz-tinh-gia-tri-bieu-thuc-p-biet-dfracxyztdfracyzt.3023321885549

Liễu Lê thị
Xem chi tiết
Akai Haruma
14 tháng 11 2021 lúc 11:45

Bạn lưu ý không đăng lặp bài gây loãng box toán.

Liễu Lê thị
Xem chi tiết
Akai Haruma
14 tháng 11 2021 lúc 11:45

Lời giải:
Nếu $x+y+z+t=0$ thì:

$P=\frac{-(z+t)}{z+t}+\frac{-(t+x)}{t+x}+\frac{-(x+y)}{x+y}+\frac{-(y+z)}{y+z}$

$=-1+(-1)+(-1)+(-1)=-4$

Nếu $x+y+z+t\neq 0$ thì áp dụng TCDTSBN:

$\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3(x+y+z+t)}=\frac{1}{3}$

$\Rightarrow 3x=y+z+t; 3y=z+t+x; 3z=t+x+y; 3t=x+y+z$

$\Rightarrow x=y=z=t$

$\Rightarrow P=1+1+1+1=4$

 

Phạm Thanh Lan
Xem chi tiết
bui huynh nhu 898
28 tháng 2 2016 lúc 19:03

=>\(\frac{x-z}{xy}-\frac{x}{y}.\frac{y+z}{z}=\frac{x-z}{xy}-\frac{xy-xz}{yz}=\frac{z\left(x-z\right)}{xyz}-\frac{x\left(xy-xz\right)}{xyz}\)=\(\frac{zx-z^2}{xyz}-\frac{x^2y-x^2z}{xyz}=\frac{zx^2-z^2-x^2y+x^2z}{xyz}\)

=>...

Nguyên Huy Thông
Xem chi tiết
Tiểu Lí
Xem chi tiết