Tìm mẫu thức chung rồi quy đồng mẫu các phân thức sau :
a) \(\frac{2x-3y}{2xy};\frac{x+2y}{x}\)
b) \(\frac{2}{x^2-4x};\frac{x}{x^2-16}\)
quy đồng mẫu thức các phân thức sau 1/3x+3y, 1/2y+2x và 1/x^2+2xy+y^2
\(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{2\cdot\left(x+y\right)}{6\left(x+y\right)^2}\)
\(\dfrac{1}{2x+2y}=\dfrac{1}{2\left(x+y\right)}=\dfrac{3\left(x+y\right)}{6\left(x+y\right)^2}\)
\(\dfrac{1}{x^2+2xy+y^2}=\dfrac{1}{\left(x+y\right)^2}=\dfrac{6}{6\left(x+y\right)^2}\)
Quy đồng mẫu thức các phân thức sau 1/3x+xy, 2y+2x và 1/x^2+2xy+y^2
\(\dfrac{1}{3x+xy}=\dfrac{1}{x\left(y+3\right)}=\dfrac{\left(x+y\right)^2}{x\left(y+3\right)\left(x+y\right)^2}\)
\(2x+2y=2\left(x+y\right)=\dfrac{2\left(x+y\right)\cdot x\left(y+3\right)\left(x+y\right)^2}{x\left(y+3\right)\left(x+y\right)^2}\)
\(\dfrac{1}{x^2+2xy+y^2}=\dfrac{3x+xy}{x\left(y+3\right)\left(x+y\right)^2}\)
Quy đồng mẫu thức các phân thức sau: a) 1/x^2y và 3/xy b) x/(x^2+2xy+y^2) và 2x/(x^2+xy)
a: 1/x^2y=1/x^2y
3/xy=3x/x^2y
b: \(\dfrac{x}{x^2+2xy+y^2}=\dfrac{x}{\left(x+y\right)^2}\)
\(\dfrac{2x}{x^2+xy}=\dfrac{2}{x+y}=\dfrac{2x+2y}{\left(x+y\right)^2}\)
Quy đồng mẫu thức các phân thức sau (có thể áp dụng quy tắc đổi dấu đối với một phân thức để tìm mẫu thức chung thuận tiện hơn):
\(\frac{4x^2-3x+5}{x^3-1}\), \(\frac{1-2x}{x^2+x+1}\)X ,\(-2\)
Tìm MTC: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
Nên \(MTC=\left(x-1\right)\left(x^2+x+1\right)\)
Nhân tử phụ:
\(\left(x^3-1\right)\div\left(x^3-1\right)=1\)
\(\left(x-1\right)\left(x^2+x+1\right)\div\left(x^2+x+1\right)=x-1\)
\(\left(x-1\right)\left(x^2+x+1\right)\div1=\left(x-1\right)\left(x^2+x+1\right)\)
Quy đồng:
\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{1-2x}{x^2+x+1}=\frac{\left(x-1\right)\left(1-2x\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(-2=\frac{-2\left(x^3-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
Đề bài: Quy đồng mẫu thức các phân thức sau (có thể áp dụng quy tắc đổi dấu đối với một phân thức để tìm mẫu thức chung thuận tiện hơn):
a) \(\frac{4x^2-3x+5}{x^3-1};\frac{1-2x}{x^2+x+1};-2\)
b) \(\frac{10}{x+2};\frac{5}{2x-4};\frac{1}{6-3x}\)
Làm ơn giải chi tiết nha, mình cảm ơn nhìu~~~
quy đồng mẫu thức các phân thức a) \(\dfrac{1}{2x^3y}\):\(\dfrac{2}{3xy^2z^3}\):\(\dfrac{5}{4yz}\)
b) \(\dfrac{x+1}{10x^3-40x}\) và \(\dfrac{5}{8x^3+16x^2}\)
bài 2 áp dụng quy tắc đổi dấu hãy quy đồng mẫu thức các phân thức
\(\dfrac{2-x}{3x-3x^2}\) và \(\dfrac{x^2-2}{4x^5-4x^2}\)
giúp mik với mik cần gấp
quy đồng mẫu thức các phân thức a) \(\dfrac{1}{2x^3y}:\) \(\dfrac{2}{3xy^2z^3}\):\(\dfrac{5}{4yz}\)
b) \(\dfrac{x+1}{10x^3-40x}\) và \(\dfrac{5}{8x^3+16x^2}\)
bài 2 áp dụng quy tắc đổi dấu hãy quy đồng mẫu thức các phân thức
\(\dfrac{2-x}{3x-3x^2}\) và \(\dfrac{x^2-2}{4x^5-4x^2}\)
Bài 2:
a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)
\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)
Tìm mẫu thức chung của các phân thức sau , quy đồng
\(\frac{5}{2x-4}\); \(\frac{z}{3x-9}\); \(\frac{7}{50-25x}\) .giúp mk nha mk tik cho
MTC : \(150\left(x-2\right)\left(x-3\right)\)
\(\frac{5}{2x-4}=\frac{5}{2\left(x-2\right)}=\frac{5.3.\left(-25\right)\left(x-3\right)}{2.3.\left(-25\right)\left(x-2\right)\left(x-3\right)}=\frac{375\left(x-3\right)}{150\left(x-2\right)\left(x-3\right)}\)
\(\frac{z}{3x-9}=\frac{z}{3\left(x-3\right)}=\frac{z.2.\left(-25\right).\left(x-2\right)}{3.2.\left(-25\right)\left(x-3\right)\left(x-2\right)}=\frac{-50z\left(x-2\right)}{150\left(x-2\right)\left(x-3\right)}\)
\(\frac{7}{50-25x}=\frac{7}{-25\left(x-2\right)}=\frac{7.2.3.\left(x-3\right)}{-25.2.3\left(x-2\right)\left(x-3\right)}=\frac{42\left(x-3\right)}{150\left(x-2\right)\left(x-3\right)}\)
i: MTC=(x-1)(x^2+1)
\(\dfrac{1}{x-1}=\dfrac{x^2+1}{\left(x-1\right)\left(x^2+1\right)}\)
\(\dfrac{2x}{x^3-x^2+x-1}=\dfrac{2x}{\left(x-1\right)\left(x^2+1\right)}\)
k: MTC=2(3x+1)(3x-1)
\(\dfrac{3x-1}{6x+2}=\dfrac{3x-1}{2\left(3x+1\right)}=\dfrac{\left(3x-1\right)^2}{2\left(3x+1\right)\left(3x-1\right)}\)
\(\dfrac{3x+1}{2-6x}=\dfrac{-\left(3x+1\right)}{2\left(3x-1\right)}=\dfrac{-\left(3x+1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}\)
\(\dfrac{6x}{9x^2-1}=\dfrac{12x}{2\left(3x-1\right)\left(3x+1\right)}\)