Giải phương trình :
\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
Giải pt : \(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
Lời giải:
PT $\Leftrightarrow 27\sqrt[3]{81x-8}=27x^3-54x^2+36x-54$
$\Leftrightarrow 27\sqrt[3]{81x-8}=(3x-2)^3-46$
Đặt $\sqrt[3]{81x-8}=a; 3x-2=b$. Khi đó:
\(\left\{\begin{matrix} a^3-27b=46\\ 27a=b^3-46\end{matrix}\right.\) $\Rightarrow 27a=b^3-(a^3-27b)$
$\Leftrightarrow a^3-b^3+27a-27b=0$
$\Leftrightarrow (a-b)(a^2+ab+b^2+27)=0$
Dễ thấy $a^2+ab+b^2+27>0$ với mọi $a,b\in\mathbb{R}$
Do đó $a-b=0\Rightarrow a=b$
$\Leftrightarrow 81x-8=(3x-2)^3$
$\Leftrightarrow 27x^3-54x^2-45x=0$
$\Rightarrow x=0; x=\frac{3\pm 2\sqrt{6}}{3}$
Vậy.......
\(\sqrt[3]{{81x - 8}} = {x^3} - 2{x^2} + \dfrac{4}{3}x - 2\left( 1 \right)\)
\(\left( 1 \right) \Leftrightarrow 27{x^3} - 54{x^2} + 36x - 54 = 27\sqrt[3]{{81x - 8}} \)
Đặt \(y=\sqrt[3]{81x-8}\Leftrightarrow y^3=81x-8\)
Vậy ta có hệ phương trình \(\left\{{}\begin{matrix}27x^3-54x^2+36x-54=27y\\81x-8=y^3\end{matrix}\right.\Rightarrow\left(3x-2\right)^3+27\left(3x-2\right)=y^3+y\left(2\right)\)
Xét hàm số \(f(t)=t^3+t(t \in \mathbb{R})\)
Đạo hàm \(f'\left(t\right)=3t^2+1>0;\forall t\in\) \(\mathbb{R}\)
Vậy hàm số trên đồng biến trên \(\mathbb{R}\)
\(\left(2\right)\Leftrightarrow f\left(3x-2\right)=f\left(y\right)\\ \Leftrightarrow3x-2=y\\ \Leftrightarrow3x-2=\sqrt[3]{81x-8}\\ \Leftrightarrow27x^3-54x^2-45x=0\)
\(\Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{{3 \pm 2\sqrt 6 }}{3} \end{array} \right.\)
Vậy phương trình có tập nghiệm: \(T = \left\{ {0;\dfrac{{3 \pm 2\sqrt 6 }}{3}} \right\}\)
Cách khác:
Phương trình đã cho tương đương với \(3.\sqrt[3]{{3\left( {x - \dfrac{2}{3}} \right) + \dfrac{{46}}{{27}}}} = {\left( {x - \dfrac{2}{3}} \right)^2} - \dfrac{{46}}{{27}}\)
Đặt \(\left\{ \begin{array}{l} u = x - \dfrac{2}{3}\\ v = \sqrt[3]{{3\left( {x - \dfrac{2}{3}} \right) + \dfrac{{46}}{{27}}}} = \sqrt[3]{{3u + \dfrac{{46}}{{27}}}} \end{array} \right.\) ta có hệ: \(\left\{ \begin{array}{l} 3u = {v^3} - \dfrac{{46}}{{27}}\\ 3v = {u^3} - \dfrac{{46}}{{27}} \end{array} \right. \)
Trừ hai phương trình cho nhau theo từng vế ta có:
\(3\left( {u - v} \right) = \left( {v - u} \right)\left( {{v^2} + uv + {u^2}} \right) \Leftrightarrow \left[ \begin{array}{l} u - v = 0{\rm{ }}\left( 1 \right)\\ {v^2} + uv + {u^2} = - 3{\rm{ }}\left( 2 \right) \end{array} \right. \)
Dễ thấy \(v^2+uv+u^2\ge0\) nên \((2)\) vô nghiệm.
\(\left( 1 \right) \Leftrightarrow u = v \Rightarrow \sqrt[3]{{3x - \dfrac{8}{{27}}}} = x - \dfrac{2}{3} \Leftrightarrow {x^3} - 2{x^2} - \dfrac{5}{3} = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{{3 \pm 2\sqrt 6 }}{3} \end{array} \right.\)
Vậy \(T = \left\{ {0;\dfrac{{3 \pm 2\sqrt 6 }}{3}} \right\}\)
Giải pt
a) \(\sqrt[3]{81x-8}=x^3-2x^2+\dfrac{4}{3}x-2\)
b) \(\left(x+1\right)\left(\sqrt{x^2+2}+\sqrt{x^2+2x+3}\right)>\sqrt{x^2+2}-2x-1\)
a, Đặt \(\sqrt[3]{81x-8}=3y-2\Leftrightarrow9x=3y^3-6y^2+4y\left(1\right)\)
Phương trình tương đương: \(3y-2=x^3-2x^2+\dfrac{4}{3}x-2\)
\(\Leftrightarrow9y=3x^3-6x^2+4x\)
Ta có hệ: \(\left\{{}\begin{matrix}9x=3y^3-6y^2+4y\\9y=3x^3-6x^2+4x\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)\left(3x^2+3y^2+3xy-6x-6y+13\right)=0\)
Vì \(3x^2+3y^2+3xy-6x-6y+13\)
\(=\dfrac{1}{2}\left[3\left(x+y\right)^2+3\left(x-2\right)^2+3\left(y-2\right)^2+2\right]>0\) nên \(x=y\)
Khi đó: \(\left(1\right)\Leftrightarrow3x^3-6x^2-5x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3\pm2\sqrt{6}}{3}\end{matrix}\right.\)
Thử lại ta được \(x=0;x=\dfrac{3\pm2\sqrt{6}}{3}\) là các nghiệm của phương trình.
giải pt :
a, \(\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
b, \(\sqrt[3]{81x-8}=x^3-2x^2+\dfrac{4}{3}x-2\)
c,\(\sqrt[3]{x-2}=8x^3-60x^2+151x-128\)
a.
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3-\left(3x-5\right)\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{3x-5}=2x-3\)
\(\Leftrightarrow3x-5=\left(2x-3\right)^3\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+3x-2-\sqrt[3]{81x-8}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{\left(3x-2\right)^3-\left(81x-8\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{27\left(x^3-2x^2-\dfrac{5}{3}x\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)
\(\Leftrightarrow\left(x^3-2x^2-\dfrac{5}{3}x\right)\left(1+\dfrac{27}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}\right)=0\)
\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x=0\)
c.
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+x-3\)
\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+\left(2x-5\right)-\left(x-2\right)\)
Đặt \(\left\{{}\begin{matrix}2x-5=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\)
\(\Rightarrow b=a^3+a-b^3\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x-5=\sqrt[3]{x-2}\)
\(\Leftrightarrow\left(2x-5\right)^3=x-2\)
\(\Leftrightarrow\left(x-3\right)\left(8x^2-36x+41\right)=0\)
\(\sqrt{81x-8}=x^3-2x^2+\frac{4}{3}x-2 \)
Giải phương trình sau :
\(\sqrt[4]{3}.243^{\frac{2x+3}{x+8}}=3^{-2}.9^{\frac{x+8}{x+2}}\)
Lần đầu e thấy đề này đấy cj .
\(\sqrt[4]{3}.243^{\frac{2x+3}{x+8}}=3^{-2}.9^{\frac{x-8}{x+2}}\)
\(\sqrt[4]{3}.243^{\frac{2x+3}{x+8}}=\frac{1}{9}.9^{\frac{x+8}{x+2}}\)
\(\sqrt[4]{3}.243^{\frac{2x-3}{x+8}}=9^{\frac{x+8}{x+2}}-1\)
\(\sqrt[4]{3}.3^5^{\frac{2x-3}{x+8}}=3^2^{\left(\frac{x+8}{x+2}-1\right)}\)
\(\frac{1}{4}+\frac{5\left(2x+3\right)}{x+8}=2\left(\frac{x+8}{x+2}-1\right)\)
\(\frac{x+8}{4x+32}+\frac{20\left(2x+3\right)}{4x+32}=2\left(\frac{x+8}{x+2}-1\right)\)
Dễ rồi cj lm nốt nhé !
ĐK: \(x\ne-8;-2\)
\(\sqrt[4]{3}.243^{\frac{2x+3}{x+8}}=3^{-2}.9^{\frac{x+8}{x+2}}\)
<=> \(3^{\frac{1}{4}}.3^{5.\frac{2x+3}{x+8}}=3^{-2}.\left(3\right)^{2.\frac{x+8}{x+2}}\)
<=> \(3^{\frac{1}{4}+5.\frac{2x+3}{x+8}}=\left(3\right)^{-2+2.\frac{x+8}{x+2}}\)
<=> \(\frac{1}{4}+5.\frac{2x+3}{x+8}=-2+2.\frac{x+8}{x+2}\)
<=> \(\frac{10x+15}{x+8}-\frac{2x+16}{x+2}+\frac{9}{4}=0\)
<=>4 ( 10x + 15 ) ( x + 2 ) -4 ( 2x + 16 ) ( x + 8 ) + 9 ( x + 8 ) ( x + 2 ) = 0
<=> 41 x^2 +102x - 248 = 0 ( giải đenta)
<=> x = -4 hoặc x = 62/41 ( thỏa mãn )
Vậy ...
a) Giải phương trình: \(\frac{x^2}{2}+\frac{x}{2}+1=\sqrt{2x^3-x^2+x+1}\)
b) Giải hệ phương trình \(\hept{\begin{cases}2x+3+\sqrt{4-y}=4\\\sqrt{2y+3}+\sqrt{4-x}=4\end{cases}}\)
(Nghi binh 20/09)
Giải các phương trình sau:
a)\(32x^4-80x^3+50x^2+4x-3-4\sqrt{x-1}=0\)
b) \(\sqrt{5x^3-12x^2+12x-7}=\frac{x^2}{2}+2x-3\)
c)\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
d)\(x+\sqrt{2x-3}=1+\sqrt{x-1}+\sqrt{x^2-3x+3}\)
e) \(\left(2x-1\right)\sqrt{x^2+1}=x^2+4x-5\)
f)\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\)
g)\(2\left(x^2+2x+3\right)=5\sqrt{x^3+3x^2+3x+2}\)
h)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
i)\(\sqrt{x\left(x+1\right)}+\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
\(2x^4+2016=x^4\sqrt{x+3}+2016x\\ \)
\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\\ \)
\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-x-\frac{1}{x}\\ \)
a)\(2x^4+2016=x^4\sqrt{x+3}+2016x\)
a)\(pt\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)
\(\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)
\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)=\frac{x^8\left(x+3\right)-4}{x^4\sqrt{x+3}+2}\)
\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)-\frac{\left(x-1\right)\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2\left(x^3+x^2+x-1007\right)-\frac{\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
bài này nghiệm khủng :vko liên hp dc, với sợ bị nhai lại nên đưa link tham khảo nhé :v
Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
c)\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-x-\frac{1}{x}\)
\(pt\Leftrightarrow\sqrt{2-x^2}-1+\sqrt{2-\frac{1}{x^2}}-1=2-x-\frac{1}{x}\)
\(\Leftrightarrow\frac{2-x^2-1}{\sqrt{2-x^2}+1}+\frac{2-\frac{1}{x^2}-1}{\sqrt{2-\frac{1}{x^2}}+1}=-\frac{x^2-2x+1}{x}\)
\(\Leftrightarrow\frac{1-x^2}{\sqrt{2-x^2}+1}+\frac{\frac{x^2-1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x^2-2x+1}{x}=0\)
\(\Leftrightarrow\frac{-\left(x-1\right)\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{\left(x-1\right)\left(x+1\right)}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{\left(x-1\right)^2}{x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{-\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{x+1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x-1}{x}\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)