giải pt :
a) x3+1 = 2\(\sqrt[3]{2x-1}\)
b) x2-3x+1 = \(\frac{-\sqrt{3}}{3}\sqrt{x^4+4x^2+1}\)
giải pt :
a,\(2x^2-11x+21=3\sqrt[3]{4x-4}\)
b,\(\dfrac{\sqrt{x-3}}{\sqrt{2x-1}-1}=\dfrac{1}{\sqrt{x+3}-\sqrt{x-3}}\)
c,\(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt
a) \(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(\sqrt{2x+3}-\sqrt{4-x}\right)^2-10\)
b) \(\sqrt{4x+1}+2\sqrt{1-x}+10\sqrt{-4x^2+3x+1}=13\)
c) \(\left(x^2+1\right)^2=13-x\sqrt{2x^2+4}\)
d) \(\left(\sqrt{x+1}+\sqrt{x-1}\right)^2-3=\frac{1}{\sqrt{x+1}-\sqrt{x-1}}\)
e) \(\left(\frac{2x-3}{\sqrt{x^2-1}}+2\right)\left(\frac{1}{\sqrt{x-1}}-\frac{1}{\sqrt{x+1}}\right)=\frac{1}{x^2-1}\)
a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)
\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)
\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)
Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)
Phương trình trở thành:
\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)
\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)
Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(
b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)
Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)
\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)
Pt trở thành:
\(a+10\left(\frac{a^2-5}{4}\right)=13\)
\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)
\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)
c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)
\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)
Đặt \(x\sqrt{2x^2+4}=a\) ta được:
\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)
d/ ĐKXĐ: \(x\ge1\)
Nhân cả tử và mẫu của vế phải với liên hợp của nó ta được:
\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x-1}\right)^2-3=\frac{\sqrt{x+1}+\sqrt{x+1}}{2}\)
Đặt \(\sqrt{x+1}+\sqrt{x-1}=a>0\)
\(\Rightarrow a^2-3=\frac{a}{2}\Rightarrow2a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}+\sqrt{x-1}=2\)
\(\Leftrightarrow x+\sqrt{x^2-1}=2\)
\(\Leftrightarrow\sqrt{x^2-1}=2-x\) (\(x\le2\))
\(\Leftrightarrow x^2-1=x^2-4x+4\)
\(\Rightarrow x=\frac{5}{4}\)
giải pt :
a, \(\dfrac{\sqrt{x-3}}{\sqrt{2x-1}-1}=\dfrac{1}{\sqrt{x+3}-\sqrt{x-3}}\)
b, \(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
giải pt
a) \(3\sqrt{x}+\frac{3}{2\sqrt{x}}=2x+\frac{1}{2x}-7\)
b) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
c) \(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
d) \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
e) \(x^2+2x\sqrt{x-\frac{1}{x}}=3x+1\)
f) \(x^2-6x+x\sqrt{\frac{x^2-6}{x}}-6=0\)
g) \(\frac{3x^2}{3+\sqrt{x}}+6+2\sqrt{x}=5x\)
h) \(\frac{x^2}{4-3\sqrt{x}}+8=3\left(x+2\sqrt{x}\right)\)
a/ ĐKXĐ: ...
\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)
\(\Rightarrow x+\frac{1}{4x}=a^2-1\)
Pt trở thành:
\(3a=2\left(a^2-1\right)-7\)
\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)
b/ ĐKXĐ:
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)
\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)
\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)
\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)
\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
e/ ĐKXĐ: ...
\(\Leftrightarrow x^2-1+2x\sqrt{\frac{x^2-1}{x}}=3x\)
Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{x^2-1}{x}+2\sqrt{\frac{x^2-1}{x}}=3\)
Đặt \(\sqrt{\frac{x^2-1}{x}}=a\ge0\)
\(a^2+2a=3\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=1\Leftrightarrow x^2-1=x\Leftrightarrow x^2-x-1=0\)
f/ ĐKXĐ: ...
\(\Leftrightarrow x^2-6+x\sqrt{\frac{x^2-6}{x}}-6x=0\)
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{x^2-6}{x}+\sqrt{\frac{x^2-6}{x}}-6=0\)
Đặt \(\sqrt{\frac{x^2-6}{x}}=a\ge0\)
\(a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{\frac{x^2-6}{x}}=2\Leftrightarrow x^2-4x-6=0\)
Giúp e giải pt:
2x-3+\(\frac{3x-1}{\sqrt{3-2x^2}+2-x}=0\)
\(^{x^2+4x+1=\left(x+4\right)\sqrt{x^2+1}}\)
\(2\left(x-2\right)\sqrt{x-1}=3x^2+5x-4-4x\sqrt{2x-1}\)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
Giải pt
a) \(2x^2+\sqrt{x^2-5x-6}=10x+15\)
b) \(5\sqrt{3x^2-4x-2}-6x^2+8x+7=0\)
c) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
d) \(2\sqrt{\frac{3x-1}{x}}=\frac{x}{3x-1}+1\)
e) \(\sqrt{\frac{24x-4}{x}}=\frac{x}{6x-1}+1\)
f) \(\sqrt{\frac{2x-1}{x}}+1+\sqrt{\frac{x}{2x-1}}=\frac{3x}{2x-1}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)