Tìm các số tự nhiên a, b, biết:
a) ab+a+b=5
b) ab+2a+5b=20
c) ab-2a+5b=20
d) ab+3a+6b=60
tìm 2 số a,b biết rằng:2a=5b và 3a+6b=54
\(2a=5b\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+6b}{15+12}=\dfrac{54}{27}=2\)
\(\dfrac{a}{5}=2\Rightarrow a=10\\ \dfrac{b}{2}=2\Rightarrow b=4\)
2a=5b => a/5 = b/2
áp dụng TC dãy tỉ số bằng nhau, ta có:
a/5 = b/2 = 3a + 6b/3.5+2.6 = 54/27 = 2
nên: a/5 = 2 => a = 2.5 = 10
b/2 = 2 => b = 2.2 = 4
lưu ý: dấu " / " là phần nha
Cho tỉ lệ thức a/b=c/d.Chứng minh
a)3a+5b/3a-5b=3c+5d/3c-5d
b) 2a + 3b/ 2a - 3b= 2c+3d/2c-3d
c)ab/cd=a^2-b^2/c^2-d^2
Tính M=(2a-b)/(3a-b)+(5b-a)/(3a+b) biết 10a^2+ab=3b^2 và a>b>0
a) (a-2).b= -5
b) (a-1).(b+3)= -7
c) ab+a= -15
d) ab+2a+ab= -17
- Bạn cho vậy là sao làm? Bạn phải ghi là a,b nguyên chứ.
Tìm các số a,b,c biết : 2a = 3b ; 5b = 7c và 3a - 7b + 5b = -30
Ta có :
\(2a=\frac{a}{\frac{1}{2}};3b=\frac{b}{\frac{1}{3}};5b=\frac{b}{\frac{1}{5}};7c=\frac{c}{\frac{1}{7}}\)
Lại có \(\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}\\\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{7}}\end{cases}}\Rightarrow\frac{a}{\frac{3}{2}}=b=\frac{c}{\frac{5}{7}}\Leftrightarrow\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}=\frac{3a-7b+5c}{\frac{9}{2}-1+\frac{25}{7}}=\frac{-30}{\frac{99}{14}}=\frac{-140}{33}\)
\(\Rightarrow\hept{\begin{cases}3a=\frac{-140}{33}\cdot\frac{9}{2}=\frac{-210}{11}\Rightarrow a=\frac{-70}{11}\\7b=\frac{-140}{33}\Rightarrow b=\frac{-20}{33}\\5c=\frac{-140}{33}\cdot\frac{25}{7}=\frac{-500}{33}\Rightarrow c=\frac{-100}{33}\end{cases}}\)
Vậy....
Chắc sai =))
Cho : 10a2 - 3b2 + ab = 0 và b > a > 0
Tính : M =( 2a - b)/(3a - b) + (5b - a)/(3a + b)
Ta có: \(10a^2-3b^2+ab=0\Leftrightarrow10a^2+6ab-5ab-3b^2=0\)\(\Leftrightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\Leftrightarrow\left(2a-b\right)\left(5a+3b\right)=0\Leftrightarrow\orbr{\begin{cases}2a-b=0\\5a+3b=0\end{cases}}\)
\(\Leftrightarrow2a=b\)hoặc \(5a=-3b\)( không thoả mãn do b>a>0)
Tthay b=2a vào M ta có: \(M=\frac{2a-2a}{3a-2a}+\frac{5.2a-a}{3a+2a}=\frac{0}{a}+\frac{9a}{5a}=0+\frac{9}{5}=\frac{9}{5}\)
cho a,b>0 và 6a^2+ab=35b^2.tính giá trị M=\(\frac{3a^2+5b^2+ab}{2a^2-3ab+4b^2}\)
Từ \(6a^2+ab=35b^2\)\(\Rightarrow6a^2+ab-35b^2=0\)
\(\Rightarrow6a^2+15ab-14ab-35b^2=0\)
\(\Rightarrow3a\left(2a+5b\right)-7b\left(2a+5b\right)=0\)
\(\Rightarrow\left(3a-7b\right)\left(2a+5b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3a=7b\\2a=-5b\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=\frac{7b}{3}\\a=-\frac{5b}{2}\end{cases}}\)
Thay vao tinh....
cho a,b>0 và 6a^2+ab=25b^2.tính giá trị của M=\(\frac{3a^2+5b^2+ab}{2a^2-3ab+4b^2}\)
Ta có : \(6a^2+ab=25b^2\)
Vì a,b > 0 nên chia cả hai vế cho a2 được : \(6+\frac{b}{a}=\frac{25b^2}{a^2}\)
Đặt \(t=\frac{b}{a}\) thì ta có \(25t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1+\sqrt{601}}{50}\\t=\frac{1-\sqrt{601}}{50}\end{cases}}\)
Tới đây bạn suy ra tỉ số giữa a và b rồi thay vào tính M nhé!
a) Chứng minh rằng: Nếu 7x+4y chia hết cho 29 thì 9x+y chia hết cho 29 (Với x;y là các số nguyên)
b) Tính giá trị biểu thức:
A= 2a/5b + 5b/6c + 6c/7d + 7d/2a biết 2a/5b = 5b/6c = 6c/7d = 7d/2a và a;b;c;d thuộc các số tự nhiên khác 0