Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn văn a
Xem chi tiết
Tuyết Ly
Xem chi tiết
lê thanh tình
24 tháng 11 2021 lúc 16:26

4x2−4xy+y2y3−6xy2+12x2y−8x34x2-4xy+y2y3-6xy2+12x2y-8x3

=4x2−4xy+y2y3+3.(−2x).y2−3.(−2x)2.y−(−2x)3=4x2-4xy+y2y3+3.(-2x).y2-3.(-2x)2.y-(-2x)3

=(2x−y)2(−2x+y)3=(2x-y)2(-2x+y)3

=−(2x−y)2(2x−y)3=-(2x-y)2(2x-y)3

=−12x−y

Phan Thị Phương Dung
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Akai Haruma
5 tháng 9 2020 lúc 14:24

Lời giải:
a)

\(A=\frac{x^2y(y-x)-xy^2(x-y)}{3y^2-2x^2}=\frac{x^2y(y-x)+xy^2(y-x)}{3y^2-2x^2}=\frac{(xy^2+x^2y)(y-x)}{3y^2-2x^2}\)

\(=\frac{xy(x+y)(y-x)}{3y^2-2x^2}=\frac{xy(y^2-x^2)}{3y^2-2x^2}\)

Với $x=-3; y=\frac{1}{2}$ thì:

$xy=\frac{-3}{2}; x^2=9; y^2=\frac{1}{4}$

Do đó $A=\frac{-35}{46}$

b)
\(B=\frac{(8x^3-y^3)(4x^2-y^2)}{(2x+y)(4x^2-4xy+y^2)}=\frac{(2x-y)(4x^2+2xy+y^2)(2x-y)(2x+y)}{(2x+y)(2x-y)^2}\)

\(=4x^2+2xy+y^2=4.2^2+2.2.\frac{-1}{2}+(\frac{-1}{2})^2=\frac{57}{4}\)

Trần Anh Đức
Xem chi tiết
Quốc An
Xem chi tiết
Ngô Tấn Đạt
24 tháng 8 2016 lúc 14:53

\(\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+4xy+y^2}{16x}\)

\(=\frac{\left(2x+y\right)^22\left(4x^2-y^2\right)+\left(2x-y\right)^2}{\left(2x-y\right)^2\left(2x+y\right)^2}.\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{16x^2}{16x\left(2x-y\right)^2}=\frac{x}{\left(2x-y\right)^2}\)

Võ Đông Anh Tuấn
24 tháng 8 2016 lúc 10:27

\(\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-4^2}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+4xy+y^2}{16x}\)

\(=\frac{\left(2x+y\right)^22\left(4x^2-y^2\right)+\left(2x-y\right)^2}{\left(2x-y\right)^2\left(2x+y\right)^2}.\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{16x^2}{16x\left(2x-y\right)^2}=\frac{x}{\left(2x-y\right)^2}\)

Nguyễn Thị Thanh Trúc
Xem chi tiết
Scorpio
Xem chi tiết
Trịnh Thành Công
Xem chi tiết