Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FF_
Xem chi tiết
Kiệt Nguyễn
15 tháng 4 2020 lúc 15:36

Ta chia hình vuông đề cho thành 16 hình vuông nhỏ bằng nhau (như hình vẽ)

Ta được độ dài cạnh của hình vuông nhỏ là 1
Có 33 điểm đặt vào 16 hình vuông theo nguyên lí Dirichlet
Suy ra tồn tại một hình vuông nhỏ chứa ít nhất 3 điểm
Giả sử hình vuông nhỏ đó là: ABCD (AC cắt BD tại O)
Có \(OA=\frac{AC}{2}=\frac{\sqrt{AB^2+BC^2}}{2}=\frac{\sqrt{1^2+1^2}}{2}=\frac{\sqrt{2}}{2}\)\(\Rightarrow AC=BD=\sqrt{2}\)

Giả sử 3 điểm đó trùng với 3 trong 4 đỉnh bất kì của hình vuông ABCD thì phần chung của ba hình tròn chứa toàn bộ hình vuông và như vậy đã tồn tại 3 điểm thỏa mãn yêu cầu bài toán.
Nếu trong 3 điểm có điểm nằm bên trong hình vuông thì phần chung của ba hình tròn cũng chứa toàn bộ hình vuông và như vậy đã tồn tại 3 điểm thỏa mãn yêu cầu bài toán
KL: tồn tại 3 điểm trong các điểm đã cho thỏa mãn yêu cầu bài toán.

Khách vãng lai đã xóa
Nguyễn Thùy Linh
7 tháng 6 2020 lúc 13:12

Khó thế này ai lm đc

Khách vãng lai đã xóa
Rhider
Xem chi tiết
Lê Song Phương
Xem chi tiết
Quang Đẹp Trai
Xem chi tiết
Lê Song Phương
20 tháng 5 2023 lúc 21:53

 Gọi \(2n+1\) điểm đó là \(A_1,A_2,...,A_{2n+1}\). Do số điểm là hữu hạn nên tồn tại 1 đoạn thẳng \(A_iA_j\left(i\ne j\right)\) sao cho \(A_iA_j\) lớn nhất trong các \(A_kA_l\left(k\ne l;k,l=\overline{1,2n+1}\right)\)

 TH1: Nếu \(A_iA_j\le1\), ta dựng 2 đường tròn \(\left(A_i,1cm\right)\) và \(\left(A_j,1cm\right)\). Dĩ nhiên nếu có bất kì điểm \(A_m\) nào nằm ngoài 2 đường tròn trên thì mâu thuẫn với giả thiết \(A_iA_j\) là đoạn thẳng có độ dài lớn nhất. Do đó, tất cả \(2n+1\) điểm sẽ nằm trong 2 đường tròn. Theo nguyên lí Dirichlet sẽ tồn tại 1 hình tròn chứa \(n+1\) điểm trong \(2n+1\) điểm đã cho. Đó là hình tròn cần tìm.

 TH2: Nếu \(A_iA_j>1\), ta vẫn dựng 2 đường tròn \(\left(A_i,1cm\right)\) và \(\left(A_j,1cm\right)\). Khi đó nếu có bất kì điểm \(A_m\) nào nằm ở ngoài cả 2 hình tròn thì \(A_mA_i\) và \(A_mA_j\) đều lớn hơn 1. Khi đó bộ 3 điểm \(\left(A_i,A_j,A_m\right)\) mâu thuẫn với giả thiết trong 3 điểm bất kì luôn có 2 điểm có khoảng cách nhỏ hơn 1. Do vậy, tất cả các điểm đã cho đều nằm trong 2 đường tròn kể trên. Lại theo nguyên lí Dirichlet thì tồn tại \(n+1\) điểm thuộc cùng một hình tròn. Đấy chính là hình tròn cần tìm.

 Vậy trong mọi trường hợp, ta đều tìm được 1 hình tròn bán kính 1cm chứa \(n+1\) điểm trong số \(2n+1\) điểm đã cho. Ta có đpcm.

Lê Song Phương
20 tháng 5 2023 lúc 22:16

 Mình giải thích thêm trường hợp 1 nhé. Nếu như có 1 điểm \(A_m\) nằm ngoài 1 trong 2 đường tròn \(\left(A_i,1\right)\) và \(\left(A_j,1\right)\) thì 1 trong 2 đoạn \(A_mA_i\) và \(A_mA_j\) sẽ lớn hơn 1. Không mất tính tổng quát, giả sử đó là đoạn \(A_mA_i\). Khi đó \(A_mA_i>1\ge A_iA_j\), vô lí vì ta đã giả sử \(A_iA_j\) là đoạn có độ dài lớn nhất.

Nguyễn Hoàng Minh
Xem chi tiết
Lại Ngọc Vân Linh
Xem chi tiết
Trần NgọcHuyền
Xem chi tiết
Nguyễn Linh Chi
11 tháng 11 2018 lúc 9:55

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

Me
29 tháng 11 2019 lúc 21:51

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

Khách vãng lai đã xóa
hoàng thị phương anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 8 2019 lúc 7:35

a) Điểm  P, O nằm giữa A và B, AO = 4cm, BP = 4cm nên PO = 2cm, BO = 2cm.

Vậy điểm P có nằm trên đường tròn (O; 2cm).

b) Gọi M là trung điểm của AB =>AM = 3cm.

Lại có AI = 1cm => IM = 2cm

=> điểm I nằm trong đường tròn có đường kính AB ( do IM < AM ).

Có OI = 3cm > OP = 2cm nên điểm I nằm ngoài đường tròn (O; 2cm).

Vậy điểm I nằm trong đường tròn có đường kính AB và nằm ngoài đường tròn (O; 2cm).

c) Đường tròn (I; 1cm) tiếp xúc với các đường tròn(O; 2cm) và  đường tròn có đường kính AB

vì AP + PB = AB

TAK Gaming
Xem chi tiết
Na
3 tháng 3 2019 lúc 9:25

ai trả lời giúp với ?