Tìm 3 số hữu tỉ dương sao cho \(a+\frac{1}{a},b+\frac{1}{b},c+\frac{1}{c}\)là 3 số nguyên dương
a) Cho các số a,b,c là các số hữu tỉ đôi một khác nhau CMR:
\(B=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\) Là bình phương của một số hữu tỷ
b) Cho các số a,b,c là các số thực dương CMR: \(\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\ge2\left(a+b+c\right)\)
c) Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\)là số chính phương
Đặt \(a-b=x;b-c=y;c-a=z\)
\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)
\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
Cho a,b,c la 3 số hữu tỉ dương thỏa mãn: \(\frac{1}{a+bc}+\frac{1}{b+ca}=\frac{1}{a+b}\)
CMR: \(\frac{c-3}{c+1}\)là bình phương của 1 số hữu tỉ
Bài 1:1, Cho a,b,c là các số hữu tỉ khác 0 sao cho
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
2,Chứng minh rằng : Với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
2. Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(\left(3^n.9+3^n\right)-\left(2^{n-1}.8+2^{n-1}.2\right)\)
= \(3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)
= \(3^n.10-2^{n-1}.10\)
= \(\left(3^n-2^{n-1}\right).10⋮10\forall n\)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Tìm số nguyên x khác 0 sao cho
A=\(\frac{x+1}{3-x}\)là 1 số hữu tỉ dương
1. Cho số hữu tỉ \(y=\frac{2a-1}{-3}\). Với giá trị nào của a thì:
a) y là số dương
b) y là số âm
c) y không là số dương cũng không phải là số âm
2. Cho số hữu tỉ \(x=\frac{a-5}{a}\) (a khác 0). Với giá trị nguyên nào của a thì x là số nguyên?
3. Cho 6 số nguyên dương a < b < c < d < m < n. Chứng minh rằng:
\(\frac{a+c+m}{a+b+c+d+m+n}\) < \(\frac{1}{2}\)
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
CM rằng:\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}\) ( với a,b,c là số hữu tỉ dương) không phải là 1 số nguyên
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}
Cho số hữu tỉ y=\(\frac{2a-1}{-3}\).Với giá trị nào của a thì
a) y là số nguyên dương
b) y là số nguyên âm
c) y không là số nguyên dương cũng không phải là số nguyên âm
Tìm các số nguyên dương a,b,c đôi một nguyên tố cùng nhau sao cho \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)là số nguyên.