Đặt: \(a+\frac{1}{a}=x\inℕ^∗\)
\(b+\frac{1}{b}=y\inℕ^∗\)
\(c+\frac{1}{c}=z\inℕ^∗\)
Em xem lại đề bài nhé! Nếu đề thế này thì rất là không có ý nghĩa.
Dạ là tìm 3 số hữu tỉ dương a,b,c ạ e xin lỗi e quên mất ạ
Đặt: \(a+\frac{1}{a}=x\inℕ^∗\)
\(b+\frac{1}{b}=y\inℕ^∗\)
\(c+\frac{1}{c}=z\inℕ^∗\)
Em xem lại đề bài nhé! Nếu đề thế này thì rất là không có ý nghĩa.
Dạ là tìm 3 số hữu tỉ dương a,b,c ạ e xin lỗi e quên mất ạ
a) Cho các số a,b,c là các số hữu tỉ đôi một khác nhau CMR:
\(B=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\) Là bình phương của một số hữu tỷ
b) Cho các số a,b,c là các số thực dương CMR: \(\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\ge2\left(a+b+c\right)\)
c) Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\)là số chính phương
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Tìm các số nguyên dương a,b,c đôi một nguyên tố cùng nhau sao cho \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)là số nguyên.
Tìm tất cả các số nguyên dương a,b,c đôi một khác nhau sao cho biểu thức :\(A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)nhận giá trị nguyên dương
1. Cho a,b,c nguyên dương sao cho (a-b)(a-c)(b-c)=a+b+c. Tìm GTNN M=a+b+c
2. Tìm n nguyên để \(A=\sqrt{\frac{25}{2}+\sqrt{\frac{625}{4}-n}}+\sqrt{\frac{25}{2}-\sqrt{\frac{625}{4}-n}}\)là số nguyên
3. Cho a,b,c dương. CMR \(\frac{a^3b}{3a+b}+..\)(hoán vị) \(\ge hoánvị\frac{a^2bc}{2a+b+c}\)
Tìm a,b,c nguyên dương đôi một khác nhau thoả
A=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Là số nguyên dương
Cho a,b,c là 3 số nguyên dương thỏa mãn:
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}=2\)
Tìm GTLN của (a+b)(b+c)(a+c)
tìm số nguyên dương n sao cho \(\frac{n-23}{n+89}\)là bình phương 1 số hữu tỉ dương
Cho a,b,c là 3 số hữu tỉ t/m abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
CMR 1trong 3 số là bình phương của 1 số hữu tỉ