Cmr 1 số chính phương có tận cùng là 5 thì chữ số hàng chúc là số 2
CMR 1 số chính phương có tận cung là 5 thì chữ số hàng chục là chữ số 2
CMR 1 số chính phương có tân cùng là 6 thì chữ số hàng chục là chữ số lẻ
CMR 1 số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn
CMR 1 số chính phương có tận cùng là 0 thì tận cùng bằng chẵn chữ số 0
Lời giải:
1.
Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$
Đặt \(a=\overline{A5}\)
\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)
\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$
--------------------
2.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.
Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)
Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))
Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.
3.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.
Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)
Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$
$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))
Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.
-----------------
4.
Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$
Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)
\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)
Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)
1, CMR 1 số chính phương có tận cùng là 0 thì phải tận cùng là chẵn chữ số 0
2, CMR 1 số chính phương tận cùng là 5 thì có chữ số hàng chục là chữ số 2
Câu 1 : Chứng minh một số chính phương có tận cùng là 0 thì phải tận cùng bằng chẵn chữ số 0.
Câu 2 : Chứng minh một số chính phương có số ước là một số lẻ và ngược lại .
Câu 3 : Chứng minh rằng một số chính phương có tận cùng là 5 thì chữ số hàng chục là chữ số 2.
Câu 4 : Chứng minh rằng một số chính phương có tận cùng là 6 thì chữ số hàng chục là chữ số lẻ.
Câu 5 : Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.
cmr số chính phương lớn hơn 100 có chữ số tận cùng là số 5 thì chữ số hàng trăm là số chẵn
Gọi số đó là a
Ta có:
( 10a + 5 )2 = ( 10a )2 + 2 ( 10a . 5 ) + 52
Từ lời giải của bạn Khôi thì:
a ( a + 1 ) là hai số liên tiếp
=> ĐPCM
P/s tham khảo nha
Giải :
Xét :
\(\left(10a+5\right)^2=100a\left(a+1\right)+25\)
Vì \(a\left(a+1\right)\)chẵn
\(\Rightarrow\) Ta có \(ĐPCM\)
Xét
\(\left(10a+5\right)^2=\left(10a\right)^2+2\left(10a\cdot5\right)+5^2\)
\(\Leftrightarrow100a^2+2\cdot50a+25\)
\(\Leftrightarrow100a^2+100a+25\)
\(\Leftrightarrow100\left(a^2+a\right)+25\)
\(\Leftrightarrow100a\left(a+1\right)+25\)
Vì \(a\left(a+1\right)\)là hai số tự nhiên liên tiếp
Suy ra \(a\left(a+1\right)⋮2\)hay nói cách khác số đó là số chẵn
Vậy Nếu số chính phương lớn hơn 100 có chữ số tận cùng là 5 thì có chữ số hàng trăm là số chẵn
p/s: 'Áp dụng hằng đẳng thức đáng nhớ' mà làm
chúc bn học tốt <3
CMR: 1 số chính phương có tận cùng bằng a thì chữ số hàng chục là chữ số chẵn.
CMR: 1 số chính phương có tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn
CMR:1 số chính phương có tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn
CMR: 1 số chính phương có tận cùng bằng a thì chữ số hàng chục là chữ số chẵn.
CMR:1 số chính phương có tận cùng bằng 5 thì chữ số hàng chục là chữ số 2
giải hộ mk bài dưới nữa nha