TÌM CÁC SỐ TỰ NHIÊN a VÀ b BIẾT :a.b = 360 VÀ ƯCLN ( a.b)=6
Tìm các số tự nhiên a và b, biết: a.b = 36 và ƯCLN(a,b) = 3
Vậy thì a và b một trong 2 số là 3.
Số còn lại là:
36 : 12 = 3
Vậy số a và b là: 3 và 12.
Mình chỉ xin cách giải thôi nha
Tìm hai số tự nhiên biết:
A,a.b=4320va BCNN(a,b)=360
B,a.b=24300 và ƯCLN(a,b)=45
b) Ta có: ƯCLN(a,b) = 45
=> a = 45k; b = 45n
=> a.b = 45k.45n = 2025kn
=> kn = 24300 : 2025 = 12
Vậy k;n xảy ra hai trường hợp
TH1: k = 1; n = 12 (hoặc ngược lại)
TH2: k = 2; n = 6 (hoặc ngược lại)
Tìm các số tự nhiên a và b biết: \(a.b=360\)và \(BCNN\left(a,b\right)=60\).
Bấm vô đây nhé:
Câu hỏi của Thái Kim Huỳnh - Toán lớp 6 - Học toán với OnlineMath
BC (a,b) = b (60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vay a = 60 hoac 6
b = 6 hoac 60
Vì 60.6=360
Hoặc 6.60=360
Vì ƯCLN(a,b).BCNN(a,b) =a.b
Do đó ƯCLN(a,b)= 360:60=6
Đặt a= 6x, b= 6y với ƯCLN(x,y) = 1
Ta có: 6x.6y = 360
x.y= 360:36 10
Ta xét:
.Nếu x= 1 thì y = 10
.Nếu x = 2 thì y = 5
.Nếu x = 10 thì y = 1
.Nếu x = 5 thì y = 2
Do đó ta có :
a = 6.1 = 6, b = 6.10 = 60
a = 6.2 = 12, b = 6.5 = 30
a = 6.10 = 60, b = 6.1 =6
a = 6.5 = 30, b = 6.2 =12
Tìm 2 số tự nhiên a, b biết a.b=6144 và ƯCLN = 32
a và b có ƯSCLN = 32 nên a có dạng : 32k , b có dạng : 32n . ta có :a.b = 32k.32n = 6144
hay kn = 6144 : 322 = 6 vậy k.n có thể sảy ra 2 trường hợp : k.n = 2 . 3 hoặc k . n =1 . 6
nếu k =2 ; n = 3 hoặc ngược lại thì : a.b = (32 .2) (32 .3) =64 . 96 = 6144
nếu k =1 ; n = 6 hoặc ngược lại thì : a.b = (32 .1) (32 .6) = 32 . 192 = 6144
ta có các giá trị sau : a = 64 ; b = 96 hoặc ngược lại
a = 32 ; b = 192 hoặc ngược lại
Gọi a=32x ; b=32y
Ta có:
32x . 32y=6144
=>32 . 32 . xy=6144
=>1024 . xy=6144
=> xy=6144 : 1024
=> xy=6
Vì giá trị của x và y là như nhau nên giả sử x>y
Ta có bảng sau:
x | 6 | 3 |
y | 1 | 2 |
a | 192 | 96 |
b | 6 | 64 |
Vậy các cặp a,b cần tìm là:
192,6 và ngược lại ; 96,64 và ngược lại
tìm hai số tự nhiên a và b (a<b) biết a.b = 18 và BCNN(a,b)=6
3;6
ai tích mk lên 880 mk tích lại cho
(a;b) = ab:[a;b] = 18: 6 =3
đặt a =3q ; b =3p (q;p) =1 ; q<p
=> a.b = 3q.3p = 18
=> qp =2 =1.2
=> q =1 => a =3
và p =2 => b =6
Vậy a =3 ; b =6
Tìm 2 số tự nhiên a và b, biết a.b =2940 và bội chung nhỏ nhất của chúng bằng 210
Tìm số tự nhiên a và b biết
BCNN ( a;b) = 120 vad a.b= 2400
tìm các số tự nhiên a>b biết: a+b=90 và ƯCLN(a,b)=15
Lời giải:
Do $ƯCLN(a,b)=15, a>b$ nên đặt $a=15x, b=15y$ với $x,y$ là stn, $x>y$ và $(x,y)=1$
Khi đó:
$a+b=90$
$\Rightarrow 15x+15y=90$
$\Rightarrow x+y=6$
Do $x>y$ và $(x,y)=1$ nên $x=5; y=1$
$\Rightarrow a=5.15=75; y=1.15=15$
1. Cho n thuộc N . Tìm ƯCLN của
a, 2 số tự nhiên liên tiếp
b, 2n+1 và 3n+1
c, 2n+1 và 6n+5
d, 20n+1 và 15n+2
2. Tìm a,b thuộc N biết a.b =864 và ƯCLN (a,b)=60
3. Tìm n thuộc N để
a, 16-2n chia hết cho n-2
b, 5n-8 chia hết cho 4-n
4.Tìm a,b thuộc N biết a+b=66 , ƯCLN ( a,b ) =6 và 1 trong 2 số đó chia hết cho 5.
5. Biết a,b thuộc N , ƯCLN (a,b) =4 , a=8. Tìm b ( với a < b )
6.Cho a<b , a và b thuộc N ; ƯCLN (a,b) =16 và b =96 .Tìm a.