Chứng minh hai số 2n+5 và 4n+12 là hai số nguyên tố cùng nhau
Chứng minh rằng 2n+5 và 4n+12 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(2n+5;4n+12)
Ta có: 2n+5 chia hết cho d => 4n+10 chia hết cho d
4n+12 chia hết cho d
=> (4n+12)-(4n+10) chia hết cho d
=> 2 chia hết cho d
=> d thuộc Ư(2)={1;2}
=> d={1;2}
Mà xét 2n+5 là lẻ và 4n+12 là số chẵn => d=1
=> 2n+5 và 4n+12 là 2 số nguyên tố cùng nhau
chứng minh rằng với mọi số tự nhiên n thì hai số : 2n + 5 và 4n + 12 là 2 số nguyên tố cùng nhau
Chứng minh rằng:
a) 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
b) 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Chứng minh hai số sau nguyên tố cùng nhau 2n+1 và 4n +12( Với n là số tự nhiên)
Chứng minh hai số sau nguyên tố cùng nhau 2n+1 và 4n +12( Với n là số tự nhiên)
Đề bài có sai ko bạn
Tạm gọi d là ước chung của hai số
Ta có:
\(\hept{\begin{cases}2n+1⋮d\\4n+12⋮d\end{cases}}\)
\(\hept{\begin{cases}4n+2⋮d\\4n+12⋮d\end{cases}}\)
\(\Rightarrow\left(4n+12\right)-\left(4n+2\right)⋮d
\)
\(\Rightarrow10⋮d\)
????
. Chứng minh hai số sau nguyên tố cùng nhau 2n+1 và 4n +12( Với n là số tự nhiên)
Chứng minh rằng với mọi số tự nhiên n thì hai số: 2n + 5 và 4n + 8 là hai số nguyên tố cùng nhau.
Gọi d=ƯCLN(2n+5;4n+8)
=>4n+10-4n-8 chia hết cho d
=>2 chia hết cho d
mà 2n+5 lẻ
nên d=1
=>ĐPCM
Chứng minh 2n+3 và 4n+8 là hai số nguyên tố cùng nhau
Gọi ƯCLN(2n + 3; 4n + 8) là d
=> 2n + 3 chia hết cho d => 2(2n + 3) chia hết cho d
4n + 8 chia hết cho d
Từ 2 điều trên => (4n + 8) - 2(2n + 3) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> (4n - 4n) + (8 - 6) chia hết cho d
=> 2 chia hết cho d
=> d thuộc {1; 2}
Ta thấy 2n + 3 là lẻ mà 2n + 3 chia hết cho d nên d lẻ
=> d = 1
=> ƯCLN(2n + 3; 4n + 8) = 1
Vậy...
Gọi ƯCLN(2n+3;4n+8)=d
Ta có: 2n+3 chia hết cho d=>2(2n+3) chia hết cho d=>4n+6 chia hết cho d
=>4n+8-(4n+6) chia hết cho d hay 2 chia hết cho d
mà 2n+3 lẻ, 4n+8 chẵn nên d=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
Chứng minh 2n+3 và 4n+3 là hai số nguyên tố cùng nhau
Chứng minh 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau
Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2﴾2n + 3﴿ = 4n + 6]
﴾4n + 8﴿ ‐ ﴾4n + 6﴿ = 2
⇒ d ∈ Ư﴾2﴿ ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3
⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau