Tìm nghiệm nguyên \(y^2-5y+62=\left(y-2\right)x^2+\left(y^2-6y+8\right)x\)
Tìm nghiệm nguyên của phương trình : \(y^2-5y+62=\left(y-2\right)x^2+\left(y^2-6y+8\right)x\)
Tìm nghiệm nguyên của phương trình
\(y^2-5y+62=\left(y-2\right)x^2+\left(y^2-6y+8\right)x\)
PT \(\Leftrightarrow\left(y^2-5y+6\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)
\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)
\(\Leftrightarrow\left(y-2\right)\left(x^2+yx-4x-y+3\right)=56\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)\left(x+y-3\right)=56\)
Ta nhận thấy x+y-3 là tổng của y-2, x-1
Đến đây ta xét lần lượt các trường hợp là ra
tìm nghiệm nguyên của phương trình:
(y-2)\(x^2\)+\(\left(y^2-6y+8\right)x^2=y^2-5y+62\)
who can help me i will tick for third
Tìm nghiệm nguyên của phương trình: \(\left(y-2\right)x^2+\left(y^2-6x+8\right)x=y^2-5y+62\)
P/S: Mn làm kết quả 6 nghiệm thì đăng, ko thì thôi nhé
Tách ra \(\left(x-1\right)\left(y-2\right)\left[\left(x-1\right)+\left(y-2\right)\right]=56\)
Xét các cặp \(\left(1;7\right);\left(-8;1\right);\left(7;-8\right)\)và hoán vị
Tìm tất cả các cặp số x,y ∈ Z+ thỏa mãn đẳng thức: \(\left(y-2\right)x^2+\left(y^2-6y+8\right)x=y^2-5y+62\)
1. Tìm nghiệm nguyên của phương trình \(y^2-5y+62=\left(y-2\right)x^2+\left(y^2-6y+8\right)x\)
2. Cho x, y, z>0 và x+y+z=1. Tìm GTNN của biểu thức P=\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
\(\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(xy-4x\right)\)
\(\Leftrightarrow\left(y-2\right)\left(x^2+xy-4x-y+3\right)=56\)
\(\Leftrightarrow\left(y-2\right)\left[\left(x-1\right)\left(x-3\right)+y\left(x-1\right)\right]=56\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)\left(x+y-3\right)=56\)
Tới đây bạn giải pt ước số bình thường (phân tích 56 thành tích 3 số là ok)
\(P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{7}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+xy+yz+zx+xy+yz+zx}+\frac{7}{\frac{\left(x+y+z\right)^2}{3}}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}=30\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Tìm nghiệm nguyên \(\left(2x+5y+1\right)\left(2^{\left|x\right|}+x^2+x+y\right)=105\)
Vì 105 là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|}+x^2+x+y\) phải là các số lẻ.
Từ \(2x+5y+1\) là số lẻ mà \(2x+1\) là số lẻ nên 5y là số chẵn suy ra y là số chẵn.
\(2^{\left|x\right|}+x^2+x+y\) là số lẻ mà \(x^2+x=x\left(x+1\right)\) là tích của hai số nguyên liên tiếp nên là số chẵn, y cũng là số chẵn nên \(2^{\left|x\right|}\) là số lẻ. Điều này chỉ xảy ra khi \(x=0\)
Thay x=0 vào phương trình đã cho, ta được:
\(\left(5y+1\right)\left(y+1\right)=105\)
\(\Leftrightarrow5y^2+6y-104=0\)
\(\Leftrightarrow5y^2-20y+26y-104=0\)
\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)
\(\Leftrightarrow\left(5y+26\right)\left(y-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=-\frac{26}{5}\left(\text{loại}\right)\\y=4\left(TM\right)\end{cases}}\)
Vậy phương trình có nghiệm nguyên \(\left(x;y\right)=\left(0;4\right)\)
Chứng minh rằng không tồn tại số nguyên n thỏa mãn $2014^{2014}+1\vdots n^{3}+2012n$ - Số học - Diễn đàn Toán học
d.violet.vn//uploads/resources/present/3/652/138/preview.swf
1. Giải phương trình nghiệm nguyên
a) \(x^2+4x+2018^{10}\)
b) \(x^2+4x+\left(y-1\right)^2=21\)
c) \(x^2+3\left(y-1\right)^2=2021\)
d) \(\left(3x-1\right)^{2020}-18\left(y-2\right)^{2019}=2019^{2020}\)
2. Tìm x,y ∈ Z
a) \(x^2-y^2+6y=56\)
b) \(x^2-4x+9y^2-6y=11\)
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
1a. Đề lỗi
1b.
PT $\Leftrightarrow (x+2)^2+(y-1)^2=25$
$\Leftrightarrow (x+2)^2=25-(y-1)^2\leq 25$
$(x+2)^2$ là scp không vượt quá $25$ nên có thể nhận các giá trị $0,1,4,9,16,25$
Nếu $(x+2)^2=0\Rightarrow (y-1)^2=25$
$\Rightarrow (x,y)=(-2, 6), (-2, -4)$
Nếu $(x+2)^2=1\Rightarrow (y-1)^2=24$ không là scp (loại)
Nếu $(x+2)^2=4\Rightarrow (y-1)^2=21$ không là scp (loại)
Nếu $(x+2)^2=9\Rightarrow (y-1)^2=16$
$\Rightarrow (x,y)=(1, 5), (1, -3), (-5,5), (-5, -3)$
Nếu $(x+2)^2=25\Rightarrow (y-1)^2=0$
$\Rightarrow (x,y)=(3, 1), (-7, 1)$
1c.
Vì $x^2$ là scp nên $x^2\equiv 0,1\pmod 3$
$3(y-1)^2\equiv 0\pmod 3$
$\Rightarrow x^2+3(y-1)^2\equiv 0,1\pmod 3$
Mà $2021\equiv 2\pmod 3$
Do đó pt $x^2+3(y-1)^2=2021$ vô nghiệm
1d.
Ta thấy:
$(3x-1)^{2020}$ là scp không chia hết cho $3$ nên $(3x-1)^{2020}\equiv 1\pmod 3$
$18(y-2)^{2019}\equiv 0\pmod 3$
$\Rightarrow (3x-1)^{2020}+18(y-2)^{2019}\equiv 1\pmod 3$
Mà $2019^{2020}\equiv 0\pmod 3$
Do đó pt vô nghiệm.
Tìm nghiệm nguyên của phương trình
a)\(x\left(x+1\right)\left(x+7\right)\left(x+8\right)=y^2\)
b)\(y\left(y+1\right)\left(y+2\right)\left(y+3\right)=x^2\)