CMR. Mọi số nguyên tố lớn hơn 3 khi chia 12 thi số dư chỉ có thể là 1 trong các số 1, 5, 7, 11
chứng minh rằng 1 số nguyến tố lớn hơn 3 khi chia cho 12 thì chỉ có thể có các số dư là 1;5;7;11
Một số nguyên tố lớn hơn 3 trước hết không chia hết cho 2 và 4 nên khi chia cho 1 số chẵn thì số dư không thể là chẵn; ta loại bỏ các số dư 0 ; 2 ;4; 6 ; 8 ; 10.
Một số nguyên tố lớn hơn 3 không chia hết cho 3 nên khi chia cho 1 số thì số dư không thể là số chia hết cho 3; ta loại bỏ các số dư 0 ; 3 ; 6 ; 9
Cuối cùng chỉ còn lại số 1 ; 5 ;7 ;11.
Vậy1 số nguyến tố lớn hơn 3 khi chia cho 12 thì chỉ có thể có các số dư là 1;5;7;11
Bài 1:Cho p và 8p-1 là các số nguyên tố.CMR:8p+1 là hợp số
Bài 2:CMR mọi số nguyên tố lớn hơn 2 đều có dạng 4k+1 hoặc 4k-1
Bài 3:1 số nguyên tố p chia cho 42 có số dư là r(r là hợp số).Tìm r???
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích?
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
1, Số tận cùng là 4 thì chia hết cho 2
2, Số chia hết cho 2 thì có chữ số tận cùng là 4
3, Số chia hết cho 5 thì có chữ số tận cùng là 5
4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7
5, Số chia hết cho 9 có thể chia hết cho 3
6, Số chia hết cho 3 có thể chia hết cho 9
7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9
8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r
9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó
10, Hợp số là số tự nhiên nhiều hơn 2 ước
11, Một số nguyên tố đều là số lẻ
12, không có số nguyên tố nào có chữ số hàng đơn vị là 5
13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8
14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số
15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố
16, Hai số nguyên tố là hai số nguyên tố cùng nhau
17, Hai số 8 và 25 là hai số nguyên tố cùng nhau
1, Số tận cùng là 4 thì chia hết cho 2 Đ
2, Số chia hết cho 2 thì có chữ số tận cùng là 4 Đ
3, Số chia hết cho 5 thì có chữ số tận cùng là 5 Đ
4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7 S
5, Số chia hết cho 9 có thể chia hết cho 3 Đ
6, Số chia hết cho 3 có thể chia hết cho 9 S
7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9 S
8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r Đ
9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó S
10, Hợp số là số tự nhiên nhiều hơn 2 ước Đ
11, Một số nguyên tố đều là số lẻ S
12, không có số nguyên tố nào có chữ số hàng đơn vị là 5 S
13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8 Đ
14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số Đ
15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố Đ
16, Hai số nguyên tố là hai số nguyên tố cùng nhau S
17, Hai số 8 và 25 là hai số nguyên tố cùng nhau S
ht
1/ Cho A=1/2+1/3+1/4+1/5+....+1/308+1/309; B=308/1+307/2+306/3+........+3/306+2/307+1/308. Tinh A/B
2/ Có hay không một số nguyên tố mà khi chia cho 12 dư 9 .Giải thích vì sao
3/ CMR: Trong 3 số nguyên tố lớn hơn 3,luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
1, B = 308/1 + 307/2 + 306/3 + ... + 3/306 + 2/307 + 1/308
= ( 307/2 + 1 ) + ( 306/3 + 1 ) + ... + ( 3/306 + 1 ) + ( 2/307 + 1 ) + ( 1/308 + 1 ) + 1
= 309/2 + 309/3 + ... + 309/306 + 309/307 + 309/308 + 1
= 309 . ( 1/2 + 1/3 + ... + 1/306 + 1/307 + 1/308 + 1/309 )
= 309 . A
=> A/B = 1/309
a) Chứng minh 10n+18n -1 chia hết cho 27 với n là số tự nhiên
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6 cho 4 dư 1 cho 19 dư 11
c) Cho p,q là các số nguyên tố lớn hơn 3 thoả mãn điều kiện p=q+2. Tìm số dư khi chia (p+q)cho 12
d) Cho P=3n+2/2n-1 trong đó n là số tự nhiên. Tìm n để P có giá trị lớn nhất
e) Tìm số tự nhiên n nhỏ nhất để các phân số sau tối giản :
7/n+9;8/n+10;9/n+11;.........;31/n+33
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
Nếu dễ thì bạn làm nốt đi. Mà bạn học lớp nào và ở đâu?
1.tìm số nguyên tố có 2 chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị và tổng của số viết theo thứ tự ngược lại là 1 số chính phương
2.tìm số tự nhiên nhỏ nhất có 4 chữ số biết só đó chia cho 12 dư 8 , chia cho 15 dư 11, chia cho 18 dư 14 , chia 24 dư 20
3.CMR: 3n-5/5n-8 tối giản với mọi n thuộc tập hợp số tự nhiên .
4.hiện nay ,đồng hồ đang chỉ 12 h .hỏi sau ít nhất bao lâu thì 2 kim:
a) trùng nhau
b) vuông góc
c) thẳng hàng
Tìm khẳng định sai trong các khẳng định sau:
A Số tự nhiên chỉ có hai ước là 1 và chính nó là số nguyên tố.
B Mọi số nguyên tố lớn hơn 2 đều là số lẻ.
C Không có số nguyên tố nào có tận cùng là 0.
D Nếu số tự nhiên x lớn hơn 11 và chia hết 11 thì x là hợp số.
A vì phải là số tự nhiên >1 và đây ko phải toán lớp 7
theo mk nghĩ cả 4 câu trên đều đúng. ko có câu nào sai