chứng minh rằng 1 số nguyến tố lớn hơn 3 khi chia cho 12 thì chỉ có thể có các số dư là 1;5;7;11
Bài 1:Cho p và 8p-1 là các số nguyên tố.CMR:8p+1 là hợp số
Bài 2:CMR mọi số nguyên tố lớn hơn 2 đều có dạng 4k+1 hoặc 4k-1
Bài 3:1 số nguyên tố p chia cho 42 có số dư là r(r là hợp số).Tìm r???
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
1, Số tận cùng là 4 thì chia hết cho 2
2, Số chia hết cho 2 thì có chữ số tận cùng là 4
3, Số chia hết cho 5 thì có chữ số tận cùng là 5
4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7
5, Số chia hết cho 9 có thể chia hết cho 3
6, Số chia hết cho 3 có thể chia hết cho 9
7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9
8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r
9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó
10, Hợp số là số tự nhiên nhiều hơn 2 ước
11, Một số nguyên tố đều là số lẻ
12, không có số nguyên tố nào có chữ số hàng đơn vị là 5
13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8
14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số
15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố
16, Hai số nguyên tố là hai số nguyên tố cùng nhau
17, Hai số 8 và 25 là hai số nguyên tố cùng nhau
1/ Cho A=1/2+1/3+1/4+1/5+....+1/308+1/309; B=308/1+307/2+306/3+........+3/306+2/307+1/308. Tinh A/B
2/ Có hay không một số nguyên tố mà khi chia cho 12 dư 9 .Giải thích vì sao
3/ CMR: Trong 3 số nguyên tố lớn hơn 3,luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
a) Chứng minh 10n+18n -1 chia hết cho 27 với n là số tự nhiên
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6 cho 4 dư 1 cho 19 dư 11
c) Cho p,q là các số nguyên tố lớn hơn 3 thoả mãn điều kiện p=q+2. Tìm số dư khi chia (p+q)cho 12
d) Cho P=3n+2/2n-1 trong đó n là số tự nhiên. Tìm n để P có giá trị lớn nhất
e) Tìm số tự nhiên n nhỏ nhất để các phân số sau tối giản :
7/n+9;8/n+10;9/n+11;.........;31/n+33
1.tìm số nguyên tố có 2 chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị và tổng của số viết theo thứ tự ngược lại là 1 số chính phương
2.tìm số tự nhiên nhỏ nhất có 4 chữ số biết só đó chia cho 12 dư 8 , chia cho 15 dư 11, chia cho 18 dư 14 , chia 24 dư 20
3.CMR: 3n-5/5n-8 tối giản với mọi n thuộc tập hợp số tự nhiên .
4.hiện nay ,đồng hồ đang chỉ 12 h .hỏi sau ít nhất bao lâu thì 2 kim:
a) trùng nhau
b) vuông góc
c) thẳng hàng
Bài 1:a)Cho n là một số ko chia hết cho 3.CMR n^2 chia 3 dư 1
b)Cho p là một số nguyên tố lớn hơn 3.Hỏi p^2+2003 là số nguyên tố hay hợp số?
Bài 2:Cho p là số nguyên tố lớn hơn 3.
a)chứng tỏ rằng p có dạng 6k+1 và 6k+5
b)Biết 8p +1 cũng là một số nguyên tố,CMR 4p+1 là hợp số
câu 1 :có hay ko một số nguyên tố mà khi chia cho 12 mà dư 9?
câu 2:Chứng minh rằng :trong 3 số nguyên tố lớn hơn 3 ,luôn tồn tại hai số nguyên tố ma tổng hoăch hiệu của chúng chia hết cho 12.