Chứng minh rằng : Có vô số số nguyên x để biểu thức sau là số chình phương :
\(\left(1+2+3+...+x\right)\left(1^2+2^2+3^2+...+x^2\right)\) .
Cho biểu thức B= \(\dfrac{\left(x+4\right).x-2}{x+4}\)
(với x ≠ -4).
Tìm số nguyên x để B có giá trị là số nguyên
\(B=\dfrac{\left(x+4\right)\times x-2}{x+4}\)
\(B=x-\dfrac{2}{x+4}\)
Vì \(x\in z\), để \(B\in z\Leftrightarrow\dfrac{2}{x+4}\in z\)
\(\Leftrightarrow2⋮\left(x+4\right)\)
\(\Leftrightarrow x+4\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left(\pm1;\pm2\right)\)
Ta có bảng sau
\(\begin{matrix}x+4&1&-1&2&-2\\x&-3&-5&-2&-6\end{matrix}\)
Vậy \(x\in\left(-2;-3;-5;-6\right)\) thì \(B\in z\)
Cho \(x^2-y=a,y^2-z=b,z^2-x=c\)\(c\) ( a , b , c là các hằng số ) Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến x , y , z :
P = \(^{x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)}\)
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
1. Cho biểu thức A = 3/n-5
a. tìm số nguyên n để A là phân số
b tìm số nguyên n để A là số nguyên
2. Cho biểu thức A=1/21 + 1/22 +...+ 1/40. Chứng tỏ 1/2 < A < 1
3. Tính A = 1/1.2 + 1/2.3 +...+ 1/49.50
B =12/1.2 .22/2.3 . 33/3.4 x...x 992/99.100
4. Chứng tỏ hiệu sau là một số nguyên 1002008 +2/3 - 1002009 +17/9
5. Chứng minh các phân số sau là phan số tối giản A= 12n+1/30n+2
6. Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất
A=(x-1)2 + 2008
B = /x+4/ + 1996
7. Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất
P = 2010- (x+1)2008
Q = 1010 - /3-x/
8. Cho biểu thức
A = 1/2 + 1/22+1/23 + 1/24 +...+ 1/2100. Chứng tỏ A < 1
9. So sánh
A = 108+2/108-1 và B = 108/108-3
10.Tính tổng
S = 1 + 2 + 22 + 23+...+ 22008/1 - 22009
1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.
2.
\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}>\frac{1}{40}.20=\frac{1}{2}\)
\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}
9.
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^8-1}
Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\)với a,b,c,d là các số nguyên . BIết \(P\left(x\right)⋮5\)với mọi x là số nguyên . Chứng tỏ rằng các số nguyên a,b,c,d cũng chia hết cho 5
Cho đa thức bậc ba \(f\left(x\right)\) với hệ số của x3 là một số nguyên dương và biết \(f\left(5\right)-f\left(3\right)=2017\) .Chứng minh rằng \(f\left(7\right)-f\left(1\right)\) là hợp số
tìm các số tự nhiên m để pt: m\(x^2+2\left(m-1\right)x+m-4=0\) có nghiệm là các số hưu tỉ( số chính phương)
- Với \(m=0\Rightarrow x=-2\) thỏa mãn
- Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)
Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương
Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ
\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)
\(\Rightarrow m=2k\left(k+1\right)\)
Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ
Tìm tất cả các giá trị nguyên của tham số m để phương trình:
\(mx^2-\left(1-2m\right)x+m-2=0^{\left(1\right)}\) có nghiệm là số hữu tỉ
(1-2m)2 - 4m(m-2) >0
1-4m +4m2-4m2 +8m >0
4m +1 >0
m > -1/4
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?
Tìm tất cả các giá trị nguyên của tham số m để phương trình:
\(mx^2-\left(1-2m\right)x+m-2=0^{\left(1\right)}\) có nghiệm là số hữu tỉ
1. Chứng minh rằng: \(\sqrt[3]{a^3+b^3+c^3}\le\sqrt{a^2+b^2+c^2}\)
2. Cho a,b,c là các số hữu tỉ. Chứng minh rằng: \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\) là 1 số hữu tỉ
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)