Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Yến Minh
Xem chi tiết
Tăng Ngọc Đạt
17 tháng 9 2023 lúc 15:24

\(B=\dfrac{\left(x+4\right)\times x-2}{x+4}\)

\(B=x-\dfrac{2}{x+4}\)

Vì \(x\in z\), để \(B\in z\Leftrightarrow\dfrac{2}{x+4}\in z\)

                              \(\Leftrightarrow2⋮\left(x+4\right)\)

                              \(\Leftrightarrow x+4\inƯ\left(2\right)\)

Mà \(Ư\left(2\right)=\left(\pm1;\pm2\right)\)

Ta có bảng sau

\(\begin{matrix}x+4&1&-1&2&-2\\x&-3&-5&-2&-6\end{matrix}\)

Vậy \(x\in\left(-2;-3;-5;-6\right)\) thì \(B\in z\)

Phạm Nhật Minh
Xem chi tiết
Phạm Nhật Minh
10 tháng 7 2018 lúc 16:09

1 c nha các bạn

Son Nguyen Cong
9 tháng 8 2018 lúc 16:29

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z

Trâm Max
Xem chi tiết
doremon
28 tháng 4 2015 lúc 20:34

1.

a.Để A là phân số thì n - 5 khác 0 => n khác 5

b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}

Ta có bảng sau:

n - 51-13-3
n6482

Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.

 

doremon
28 tháng 4 2015 lúc 20:38

2.

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}>\frac{1}{40}.20=\frac{1}{2}\)

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}

doremon
28 tháng 4 2015 lúc 20:41

9.

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì \(\frac{3}{10^8-1}

Nguyễn Quốc Khánh
Xem chi tiết
Pham Thuy Linh
Xem chi tiết
Miya Kyubi
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 12:51

- Với \(m=0\Rightarrow x=-2\) thỏa mãn

- Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)

Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương

Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ

\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)

\(\Rightarrow m=2k\left(k+1\right)\)

Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ

Lê Hà Phương
Xem chi tiết
Đặng Quỳnh Ngân
14 tháng 8 2016 lúc 12:49

(1-2m)2 - 4m(m-2) >0

1-4m +4m2-4m2 +8m >0

4m +1 >0

m > -1/4

Đặng Quỳnh Ngân
14 tháng 8 2016 lúc 16:13

với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?

Inspection
14 tháng 8 2016 lúc 16:21

Đặng Quỳnh Ngân - Ảo nặng ~~

Hà Phương
Xem chi tiết
Hà Phương
14 tháng 8 2016 lúc 12:45

Bơ t hết rồi ak khocroi

Nguyễn Phương HÀ
14 tháng 8 2016 lúc 13:17

Hỏi đáp Toán

Thiên Phong
Xem chi tiết
Chu Văn Long
26 tháng 9 2016 lúc 23:47

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)