Cho ΔABC có \(\widehat{B}< \widehat{C}\) . Tia phân giác của góc ngoài tại đỉnh A cắt CB ở E. Tính \(\widehat{AEB}\) \(theo\) \(các\) \(\widehat{B}\) và \(\widehat{C}\) của ΔABC
Cho tam giác ABC có \(\widehat{B}\)>\(\widehat{C}\) tia phân giác của góc ngoài đỉnh A cắt đường thẳng CB tại E. Tính \(\widehat{AEB}\)theo các \(\widehat{B}\)và \(\widehat{C}\)của tam giác ABC
Bạn tham khảo ở đây:
Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath
Link nek:
Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath
Bn tham khảo ở đây nha
~ Rất vui vì giúp đc bn ~
Tứ giác ABCD có\(\widehat{A}=110^0,\widehat{B}=100^0\) . Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat{CED,}\widehat{CFD}\)
Cho \(\Delta{ABC} \) có \(\widehat{B} > \widehat{C}\) . Tia phân giác của góc ngaòi tại đỉnh A cắt CB ở E . Tính \(\widehat{AEB} \) theo các \(\widehat{B},\widehat{C} \) của \(\Delta{ABC} \)
Tứ giác ABCD có \(\widehat{A}=110^0,\widehat{B}=100^0\). Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat{CED},\widehat{CFD}\) ?
Tứ giác ABCD có : góc C + góc D = \(360^o\) - ( góc A + góc B )
góc C + góc D = \(360^o\) - ( \(110^o+100^o\) )
góc C + góc D = \(360^o\) - \(210^o\)
góc C + góc D = \(150^o\)
\(\Rightarrow\) Góc \(C_1\) + góc \(D_1\) = \(\dfrac{gocC+gocD}{2}\) = \(\dfrac{150^o}{2}\) = \(75^o\)
Xét \(\Delta CED\) có góc \(C_1\) + góc \(D_1\) + góc CED = \(180^o\) ( Tổng 3 góc của 1 \(\Delta\) )
\(75^o\) + góc CED = \(180^o\)
góc CED = \(180^o\) - \(75^o\)
góc CED = \(105^o\)
Vì DE và DF là các tia phân giác của hai góc kề bù ( gt)
\(\Rightarrow\) DE \(\perp\) DF
Vì CE và CF là các tia phân giác của hai góc kề bù ( gt )
\(\Rightarrow\) CE \(\perp\) CF
Xét tứ giác CEDF co :
góc E + góc ECF + góc EDF + góc F = \(360^o\) ( tổng 4 góc trong 1 tứ giác )
\(105^o+90^o+90^o\)+ góc F = \(360^o\)
góc F = \(360^o\) - ( \(105^o+90^o+90^o\) )
góc F = \(360^o\) - \(285^o\)
góc F = \(75^o\)
Cho tứ giác ABCD có\(\widehat{A}=100^0,\widehat{D}=80^0.\) Tia phân giác của góc C và D cắt nhau ở E. Các đường phân giác của góc ngoài tại đỉnh C và D cắt nhau tại F. Tính các góc \(\widehat{CED},\widehat{CFD}\)
Từ giác ABCD có \(\widehat{A}=110^0\),\(\widehat{B}=100^0\). Các tia phân giác của các góc C và Dcắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat{CED}\), \(\widehat{CFD}\)
Cho tứ giác ABCD có phân giác trong của góc A và góc B cắt nhau tại E . Phân giác ngoài của góc A và B cắt nhau tại F . Chứng minh
góc AEB =\(\frac{C\widehat{ }+D\widehat{ }}{2}\) và góc AFB = \(\frac{A\widehat{ }+\widehat{B}}{2}\)
1, Cho tứ giác ABCD có \(\widehat{B}\)+ \(\widehat{D}\) =180 độ ,AC là tia phân giác của góc A.Chứng minh CB=CD.
2, Cho tứ giác ABCD có \(\widehat{A}\) = a , \(\widehat{C}\) = b .Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F.Các tia phân giác của hai góc AEB và AFD cắt nhau tại I.Tính góc \(\widehat{EIF}\) theo a,b
Cho tam giác ABC,\(\widehat{A}=a^o\left(0< a< 90^o\right)\).Các phân giác BD,CE cắt nhau tại O.Tia phân giác của góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác của góc ngoài tại đỉnh C cắt tia BO tại N.
a)Tính số đo \(\widehat{BOC}\).
b)Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)
Cho tam giác ABC,\(\widehat{A}=a^o\left(0< a< 90^o\right)\).Các phân giác BD,CE cắt nhau tại O.Tia phân giác của góc ngoài tại đỉnh B cắt tia CO tại M, tia phân giác của góc ngoài tại đỉnh C cắt tia BO tại N.
a)Tính số đo \(\widehat{BOC}\).
b)Chứng minh rằng \(\widehat{BMC}=\widehat{BNC}=\frac{a^o}{2}\)
c)Xác định giá trị của a để \(\widehat{BDC}=\widehat{CEA}\)