Cho đường tròn tâm O bán kính 15 cm ,dây BC =24 cm. Các tiếp tuyến của đường tròn tâm O tại B và C cắt nhau tại A.
Tính khoảng cách OH từ O đến dây BC.C/m O,H,A thẳng hàng.Tính AB,AC.Gọi M là giao của AB và CO , N là giao của AC và BO. C/m BC // NMCho đường tròn tâm O bán kính 15 cm ,dây BC =24 cm. Các tiếp tuyến của đường tròn tâm O tại B và C cắt nhau tại A.
Tính khoảng cách OH từ O đến dây BC.C/m O,H,A thẳng hàng.Tính AB,AC.Gọi Mlà giao của AB và CO , N là giao của AC và BO. C/m BCNM là hình thang cân.a) Dùng Pytago ta tính được OH=9cm
b) Vì và nên OA là đường trung trực BC
Mà H là trung điểm BC
=>A,H,O thẳng hàng.
c.\(\Delta ABO\) Vuông tại B đươngg cao BH
\(\Rightarrow\frac{1}{AB^2}=\frac{1}{BH^2}-\frac{1}{OB^2}\)
\(\Rightarrow\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AB=20cm\)
Cho đường tròn tâm O , bán kính r , đường kính AB , dây AC không qua tâm , H là trung điểm AC. a) Tính góc ACB và chứng minh OH song song với BC b) Tiếp tuyến tại C của đường tròn O cắt tia OH ở M. CM: MA là tiếp tuyến tại A của đường tròn
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
=>\(\widehat{ACB}=90^0\)
Ta có: ΔOAC cân tại O(OA=OC)
mà OH là đường trung tuyến
nên OH\(\perp\)AC và OH là tia phân giác của góc AOC
Ta có: OH\(\perp\)AC(cmt)
AC\(\perp\)CB tại C(Do ΔACB vuông tại C)
Do đó: OH//BC
b:
OH là phân giác của góc AOC
=>\(\widehat{AOH}=\widehat{COH}\)
mà M\(\in\)OH
nên \(\widehat{AOM}=\widehat{COM}\)
Xét ΔOCM và ΔOAM có
OC=OA
\(\widehat{COM}=\widehat{AOM}\)
OM chung
Do đó: ΔOCM=ΔOAM
=>\(\widehat{OCM}=\widehat{OAM}\)
mà \(\widehat{OCM}=90^0\)
nên \(\widehat{OAM}=90^0\)
=>OA\(\perp\)MA tại A
=>MA là tiếp tuyến tại A của (O)
Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)
\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)
Cho đường tròn tâm O đường kính AB. Trên bán kính OA, lấy điểm C tùy ý (C khác O và A). Vẽ đường tròn tâm J đường kính AC. Gọi I là trung điểm BC. Qua I vẽ dây cung MN vuông góc BC; AM cắt đường tròn tâm J tại E.
a/ CM CIME nội tiếp.
b/ CM BMCN là hình thoi. Từ đó suy ra ba điểm E, C, N cùng thuộc một đường thẳng.
c/ CM IE là tiếp tuyến của đường tròn tâm J.
d/ Đường tròn tâm M bán kính MI cắt đường tròn tâm O tại P và Q, Gọi H là giao điểm của PQ và MN. Tính tỉ số HM/HN
Cho đường tròn (O; 15cm ). Dây BC= 24cm. Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại A a/ tính khoảng cách từ tâm đến dây BC b/ chứng minh ba điểm O;A;H thẳng hàng c/ tính độ dài AB và AC
a: ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC
=>HB=HC=12cm
=>\(OH=\sqrt{15^2-12^2}=9\left(cm\right)\)
b: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
=>A nằm trên trung trực của BC
mà OH là trung trực của BC
nên O,H,A thẳng hàng
c: OA=OB^2/OH=15^2/9=25cm
=>AB=AC=20cm
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
Cho đường tròn tâm O, đường kính AB, dây AC ( AC<BC). Gọi H là trung điểm AC. Tiếp tuyến tại C của (O) cắt tia OH tại M.
a) C/m : AM là tiếp tuyến của (O)
b) Cho bán kính của (O) = 15 cm, AC = 24 cm. Tính OM
c) Tia BC cắt tia AM tại I. C/m : IM=AM
d) C/m : cos2B = 1 - 2sin^2B
Mọi người giúp em câu d) với !
1 .
Cho đường tròn (O;13 cm) , dây AB=24cm
a) Tính khoảng cách từ tâm O đến dây AB?
b) Gọi M là điểm thuộc dây AB. Qua M, vẽ dây CD vuông góc với dây AB tại điểm M. Xác định vị trí điểm M trên dây AB để AB=CD
2 .
Cho đường tròn (O) và 2 điểm A,B phân biệt thuộc (O) sao cho đường thẳng AB không đi qua tâm O trên tia đối của tia AB lấy điểm M khác điểm A, từ điểm M kẻ 2 tiếp tuyến phân biệt M E ,MF với đường tròn .GỌI H là trung điểm của dây cung AB , các điểm K và I theo thứ tự là giao điểm của đường thẳng EF với các đường thẳng OM
1 cm m,o,h,e,f cùng nằm trên 1 đường tròn
2 oh .oi=ok.om
3Cm IA,IB là các tiếp tuyến của đường tròn
cho đường tròn O bán kính R, dây AB cố định. Điểm M thuộc cung lớn AB. Gọi I là trung điểm của dây AB. Vẽ đường tròn tâm O' qua M tiếp xúc với AB tại A. Tia MI cắt đường tròn tâm o' tại N và cắt đường tròn tâm O tại C. cm NA song sonh với BC?